本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
MaxCompute通过脚本模式支持IF ELSE分支语句,让程序根据条件自动选择执行逻辑,支持更好的处理因数据不同而需要采用不同策略的业务场景产生的复杂SQL,提高开发者编程的灵活性!
MaxCompute支持QUALIFY语法过滤Window函数的结果,使得查询语句更简洁易理解。Window函数和QUALIFY语法之间的关系可以类比聚合函数+GROUP BY语法和HAVING语法。
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
随着业务在金融、保险和商城领域的不断扩展,众安保险建设 CDP 平台以提供自动化营销数据支持。早期 CDP 平台依赖于 Spark + Impala + Hbase + Nebula 复杂的技术组合,这不仅导致数据分析形成数据孤岛,还带来高昂的管理及维护成本。为解决该问题,众安保险引入 Apache Doris,替换了早期复杂的技术组合,不仅降低了系统的复杂性,打破了数据孤岛,更提升了数据处理的效率。
本文主要介绍异步任务处理系统中的数据分析,函数计算异步任务最佳实践-Kafka ETL,函数计算异步任务最佳实践-音视频处理等。
本文从统一工程交付的概念模型开始,介绍了如何将应用交付的模式显式地定义出来,并通过工具平台落地。