为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
 
              SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
在当今数字化时代,日志数据已成为企业 IT 运营和业务分析的关键资源。然而,随着业务规模的扩大和系统复杂度的提升,日志数据的体量呈现爆发式增长,给日志采集和处理系统带来了巨大挑战。
SLS 是阿里云可观测家族的核心产品之一,提供全托管的可观测数据服务。本文以 o11y 2.0 为引子,整理了可观测数据 Pipeline 的演进和一些思考。
 
              本篇文章通过几个技术点说明日志记录过程中的性能实践,计算机领域的性能往往都遵循着冰山法则,即你能看得见的、程序员能感知的只是其中的一小部分,还有大量的细节隐藏在冰山之下。
本文将从使用的角度出发,来更详细的展示一下流存储的场景,看看它和业务消息的场景有哪些区别。 RocketMQ 5.0 面向流存储的场景,提供了哪些特性。再结合两个数据集成的案例,来帮助大家了解流存储的用法。
本文将从概念和宏观角度理解什么是流处理。 RocketMQ 5.0,学习 RocketMQ 提供的轻量流处理引擎 RStreams,了解其特性和原理。学习 RocketMQ 的流数据库 RSQLDB,通过流存储和流计算的深度结合,看它如何进一步降低流处理使用门槛。