DeepSeek 凭借其卓越的性能和广泛的应用场景,迅速在全球范围内获得了极高的关注度和广泛的用户基础。DeepSeek-R1-Distill 是使用 DeepSeek-R1 生成的样本对开源模型进行蒸馏得到的小模型,拥有更小参数规模,推理成本更低,基准测试同样表现出色。依托于函数计算 FC 算力,Serverless+ AI 开发平台 CAP 现已提供模型服务、应用模版两种部署方式辅助您部署 DeepSeek R1 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中。欢迎您立即体验。
本篇不仅仅是介绍Spring循环依赖的原理,而且给出Spring不能支持的循环依赖场景与案例,对其进行详细解析,同时给出解决建议与方案,以后出现此问题可以少走弯路。
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
MSE(微服务引擎)在微服务全链路灰度场景下提供了一套成熟的功能,支持内容规则和百分比规则的灰度路由策略。
用户将 RDS MySQL 实例从 5.6 升级到 8.0 后,发现相同 SQL 的执行时间增长了十几倍。本文就该问题逐步展开排查,并最终定位根因。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。