vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
本文向大家介绍,MSE Nacos 是如何解决敏感配置的安全隐患,并提供使用 MSE Nacos 加解密敏感配置的最佳实践。
本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。
从整体技术架构上学习 RocketMQ 5.0 的云原生架构、一体化架构,最后再分别从业务场景切入,详细介绍 RocketMQ 5.0 在不同的业务场景提供的能力和关键技术原理,包括业务消息、流处理、物联网以及面向云时代的事件驱动场景。
当前,大多数面向 Golang 应用的监控能力主要是通过 SDK 方式接入,需要开放人员手动进行埋点,会存在一定问题。对此,可观测 Go Agent 应运而生。本文介绍的阿里云可观测 Go Agent 方案,能通过无侵入的方式实现应用监控能力。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。
在本文中,作者介绍了 Lingma SWE-GPT,一款专为解决复杂软件改进任务设计的开源大型语言模型系列。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。