在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
本文介绍了如何使用通义万相AIGC技术和阿里云的计算和存储产品来搭建自己的AI绘画服务。首先,通过创建基础云产品资源和部署AI绘画服务的步骤来开始搭建服务。然后,介绍了模板的原理和内容,以及ROS编排引擎的作用。接下来,详细介绍了AI绘画服务的一键部署过程,包括定义参数、模板的编写和ROS的使用。最后,提到了应用运行环境的搭建和自定义应用页面的方法。通过ROS的自动化部署,用户可以方便快捷地拥有自己的AI绘画服务。
在特定场景下编写模板的流程比较固定,本篇文章以《部署单点 WordPress 博客平台》为例,讲述如何完成一个部署成功率高、适配场景广的模板。大多数在 ECS 上部署应用的模板都可以参考此教程来编写。
ROS(Resource Orchestration Service)是阿里云的资源编排服务,通过模板定义资源和依赖关系。CDK中的Asset模块扮演关键角色,将本地文件转化为云资产,方便上传至OSS(Object Storage Service)存储。OSS是一个云存储服务,能安全存储大量数据,并支持高效访问。通过ROS CDK,开发者可以将本地的Next.js博客项目打包并部署到OSS,实现静态网站的云托管。部署过程包括初始化项目、安装依赖、定义资源、打包博客代码和使用CDK部署到OSS。通过这种方式,开发者可以利用ROS CDK的自动化能力,高效地管理和更新云上资源。
本文以阿里云百炼官方文档问答助手为例,介绍如何基于阿里云百炼平台打造基于LlamaIndex的RAG文档问答产品。我们基于阿里云百炼平台的底座能力,以官方帮助文档为指定知识库,搭建了问答服务,支持钉钉、Web访问。介绍了相关技术方案和主要代码,供开发者参考。
RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。
为增强对 Python 应用,特别是 Python LLM 应用的可观测性,阿里云推出了 Python 探针,旨在解决 LLM 应用落地难、难落地等问题。助力企业落地 LLM。本文将从阿里云 Python 探针的接入步骤、产品能力、兼容性等方面展开介绍。并提供一个简单的 LLM 应用例子,方便测试。
本文整理自2024年云栖大会阿里云智能集团高级技术专家金吉祥的演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》。