接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
在 AI 与云原生融合的趋势下,开发者面临模型协同与云端扩展的挑战。MCP(模型上下文协议)提供统一的交互规范,简化模型集成与服务开发。Function AI 支持 MCP 代码一键上云,提供绑定代码仓库、OSS 上传、本地交付物部署及镜像部署等多种构建方式,助力开发者高效部署智能服务,实现快速迭代与云端协同。
本文向大家介绍,MSE Nacos 是如何解决敏感配置的安全隐患,并提供使用 MSE Nacos 加解密敏感配置的最佳实践。
为应对分布式云多集群监控的挑战,阿里云可观测监控 Prometheus 版结合 ACK One,凭借高效纳管与全局监控方案有效破解了用户在该场景的监控运维痛点,为日益增长的业务需求提供了一站式、高效、统一的监控解决方案,实现成本与运维效率的双重优化。助力企业的数字化转型与业务快速增长,在复杂多变的云原生时代中航行,提供了一个强有力的罗盘与风帆。
近日,阿里云可观测产品家族正式发布云监控 2.0,隶属产品日志服务 SLS、云监控 CMS、应用实时监控服务 ARMS 迎来重磅升级。