本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
今天分享一下,基于阿里云函数计算 FC 以及 CAP(云应用开发平台),极速托管专属的 CosyVoice 应用。并且我们提供了 API 调用方案以及镜像构建源码方便您根据自己的业务任意 DIY。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
在数字化转型的大潮中,云计算成为推动创新和优化业务流程的关键力量。作为阿里巴巴集团的核心产品之一,函数计算(Function Compute)引领着 Serverless 计算的新时代。本文将深入探讨函数计算如何通过技术革新实现提效降本,以及其在 AI 业务、数据处理和 Web 应用等多个领域的广泛应用。
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
该文档详细介绍了阿里云一键部署和手动部署多媒体数据存储与分发方案的步骤。一键部署通过资源编排服务(ROS)实现自动化,涵盖注册账号、开通服务、创建OSS Bucket、配置CDN加速及绑定IMM等功能,简化了复杂操作。手动部署则更细致地展示了每个配置环节,包括网络规划、资源创建、域名绑定、CDN配置、证书加密及最终的验证与清理,确保用户对整个流程有清晰理解。两种方式均以OSS为核心,支持数据上传、转码处理和加速分发,保障高效稳定的用户体验。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。