基于 IaC 的理念,通过定义一个模板,使用 ROS 提供的 Terraform 托管服务进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 ChatTTS 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
PolarDB Serverless如何在0.5秒内实现跨机迁移?
ChatTTS是一款针对对话场景的文本转语音模型,支持英中两种语言,训练数据超过10万小时。ChatTTS可通过WebUI和API访问。阿里云的资源编排服务(ROS)提供了一键部署ChatTTS到云端的方案,用户只需在ROS控制台配置模板参数,如区域和实例类型,即可完成部署。部署后,从资源栈输出获取ChatTTS服务地址。ROS利用IaC理念自动化部署云资源和应用,提高了部署效率和稳定性。
在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
本方案利用函数计算 FC 部署 Web 应用,调用百炼模型服务实现 PPT 到视频的自动转换。视觉模型智能理解 PPT 图文内容,快速生成相匹配的解说词;文本模型对解说词进行优化,提高其可读性和吸引力;语音模型则根据解说词生成生动流畅的旁白音频。整个过程高度集成,只需一键操作,系统即可自动整合图片、文本和音频素材,快速生成对应讲解视频。
云上托管 MCP 搭建 AI Agent 将成为趋势。函数计算 FC 目前已经支持开源 MCP Server 一键托管,欢迎体验。