本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
MaxCompute支持QUALIFY语法过滤Window函数的结果,使得查询语句更简洁易理解。Window函数和QUALIFY语法之间的关系可以类比聚合函数+GROUP BY语法和HAVING语法。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文介绍PolarDB-X数据库实现了基于标签的访问控制功能,可以在行、列级别对数据访问进行控制,精细化的限制用户对数据的访问和操作,保证了读写数据的安全。下文根据实际应用场景,介绍PolarDB-X的LBAC功能设计以及使用方法。
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。