本文就通过一个客户的实际案例开介绍如何使用在无法直接开启CEN flowlog的情况下,使用SLS的数据加工能力,从VPC flowlog的数据中过滤出客户需要的流量日志出来。
在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...
通过EMR+DLF数据湖方案,可以为企业提供数据湖内的统一的元数据管理,统一的权限管理,支持多源数据入湖以及一站式数据探索的能力。本方案支持已有EMR集群元数据库使用RDS或内置MySQL数据库迁移DLF,通过统一的元数据管理,多种数据源入湖,搭建高效的数据湖解决方案。
本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
如果用户发现活跃连接数、cpu 使用率等指标处于高位, 同时慢SQL日志中发现大量记录, 分析得出是大量慢 SQL占用了数据库资源,而且这些慢SQL已经影响到整体核心业务的稳定运行,此时我们需要对其进行限流。
针对写少读多的业务,本文采用读写分离的方式,将读写流量做分流,减轻主实例的压力,同时利用只读库横向的扩展能力,快速提升读性能。
PolarDB-X 为了方便用户体验,提供了免费的实验环境,您可以在实验环境里体验 PolarDB-X 的安装部署和各种内核特性。除了免费的实验,PolarDB-X 也提供免费的视频课程,手把手教你玩转 PolarDB-X 分布式数据库。本期实验将指导您使用对 PolarDB-X 进行慢SQL优化。...