在应用开发测试验证通过后、进行生产发布前,为了降低新版本发布带来的风险,期望能够先部署到灰度环境,用小部分业务流量进行全链路灰度验证,验证通过后再全量发布生产。本文主要介绍如何通过阿里云MSE 微服务引擎和云效应用交付平台AppStack 实现灰度发布。
通过函数计算的能力让阿里云的文档从静态展示升级为动态可操作验证,用户在文档中单击一键部署可快速完成代码的部署及测试。这一改变已在函数计算的活动沙龙中得到用户的认可。
日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。
阿里云OOS提供了定时升级Redis实例临时带宽的功能,以应对数据驱动业务中的流量高峰。这个功能允许用户根据预测的业务负载,在特定日期和时间自动增加Redis实例的带宽,确保服务性能和稳定性。在高流量事件结束后,带宽会自动恢复到原设置,节省成本。 此功能适用于电商平台促销、大型游戏更新等场景,确保在流量高峰期间的系统稳定运行。
基于 IaC 的理念,通过定义一个模板,使用 ROS 提供的 Terraform 托管服务进行自动化部署,可以非常高效快捷地部署任意云资源和应用(比如 ChatTTS 服务)。相比于手动部署或者通过 API、SDK 的部署方式,有着高效、稳定等诸多优势,也是服务上云的最佳实践。
高可用服务是另外一个高频使用的场景,编写模板的流程和《部署单点WordPress网站》一样,但涉及的资源更多一些。本文以《部署高可用WordPress网站》为例,介绍高可用部署类的模板如何编写。
复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
在数字化转型的大潮中,云计算成为推动创新和优化业务流程的关键力量。作为阿里巴巴集团的核心产品之一,函数计算(Function Compute)引领着 Serverless 计算的新时代。本文将深入探讨函数计算如何通过技术革新实现提效降本,以及其在 AI 业务、数据处理和 Web 应用等多个领域的广泛应用。