本次分享,主题是利用通义灵码提升前端研发效率。分享内容主要包括以下几部分:首先,我将从前端开发的角度介绍对通义灵码的基本认识;其次,我将展示通义灵码在日常研发中的应用案例;然后,我将通过实例说明,良好的设计能够显著提升通义灵码的效果。在第四个部分,我将介绍通义灵码的企业知识库以及如何利用 RAG 构建团队智能研发助手。最后,我将总结本次分享并展望未来方向。
阿里云发布的QwQ-32B模型通过强化学习显著提升了推理能力,核心指标达到DeepSeek-R1满血版水平。用户可通过阿里云系统运维管理(OOS)一键部署OpenWebUI+Ollama方案,轻松将QwQ-32B模型部署到ECS,或连接阿里云百炼的在线模型。整个过程无需编写代码,全部在控制台完成,适合新手操作。
一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。