本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文介绍了将社区主流STDIO MCP Server一键转为企业内可插拔Remote MCP Server的方法,以及存量API智能化重生的解决方案。通过FunctionAI平台模板实现STDIO MCP Server到SSE MCP Server的快速部署,并可通过“npx”或“uvx”命令调试。同时,文章还探讨了如何将OpenAPI规范数据转化为MCP Server实例,支持API Key、HTTP Basic和OAuth 2.0三种鉴权配置。该方案联合阿里云百练、魔搭社区等平台,提供低成本、高效率的企业级MCP Server服务化路径,助力AI应用生态繁荣。
XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
通义灵码在企业版里还引入了一个超酷的新技能:RAG(Retrieval-Augmented Generation)检索增强生成的能力,本文就跟大家分享下企业知识库能帮开发者做些什么。
bpftrace是一个内核跟踪工具,简单来说就是在函数上挂个钩子,挂上钩子后就可以将函数的入参和返回值取出来再放入程序进行二次编程,最终能让程序按照我们的意图来对函数进行观测。
SAE 会继续致力于为用户提供极简易用、成本低廉、功能强大的 Serverless 应用全托管平台:“我们希望让用户做的更少而收获更多,通过 Serverless 化,深度用云就像用水电煤一样简单”。
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。