在 2024 年春节前夕,修正电商事业部面临了前所未有的技术挑战,修正将参与春晚的全民健康好礼派发的活动,且在央视及各大平台进行广告投放,预计流量激增至 16 亿,系统需要承载保底 5 万 QPS,目标 10 万 QPS。修正技术团队迫切需要升级 APP 架构以应对即将到来的超高并发场景。这一挑战不仅是对技术的考验,更是对修正品牌实力的一次展示。为了应对这次巨大的技术挑战,修正技术团队选择与阿里云云原生团队合作,进行 APP 架构的升级。
本⽂对敏感信息拦截插件的使用方式和实现原理进行了简单介绍,它能够自动检测并处理请求和响应中的敏感词,有效防止敏感信息泄露。通过对不同数据范围的支持和灵活的配置选项,该插件能够适应各种应用场景,确保数据的安全性和合规性。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
本文详细介绍了阿里云资源编排服务(ROS)提供的Terraform托管服务,对比了ROS与Terraform的原生能力,帮助用户根据需求选择合适的IaC工具。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
在业务场景中,日志数据可能存储在日志服务 Project 的不同 Logstore/MetricStore 中或不同地域的 Project 中。日志服务的数据集(StoreView)功能支持跨地域、跨 Store 联合查询和分析,让用户基于数据集就能高效便捷地查询分析全地域的数据,真正做到数据分析不受地域边界的限制。