近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
本文详细记录了作者在处理HSF调用异常问题的过程中,从初步怀疑死锁到最终发现并解决活锁问题的全过程。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。
本文介绍了为何需要WolframAlpha及其在解决大语言模型“幻觉”问题上的优势。大型语言模型如GPT-4虽在自然语言处理方面表现出色,但在科学与数学问题上常出错。WolframAlpha凭借其强大的计算能力和广泛的知识库,能准确处理复杂问题。Higress MCP市场已上线WolframAlpha LLM API,支持多种调用方式,并提供每月10次免费试用。配置流程包括获取API工具、安装Lobechat及配置Higress MCP插件。测试案例显示,WolframAlpha在数学推理、日常计算和图像绘制等方面表现优异,未来结合更多服务将推动AI技术发展。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。