本课程是阿里云百炼平台的第二天课程内容,旨在帮助用户了解如何通过阿里云百炼构建和发布自己的AI应用。介绍了如何利用大模型和智能体应用来创建具备强大语言理解和生成能力的AI助手,并通过不同的渠道(如网站、钉钉、微信公众号等)发布这些应用。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
本文介绍了如何使用通义灵码编程智能体与高德 MCP 2.0 制作北京端午3天旅行攻略页面。首先需下载通义灵码 AI IDE 并获取高德申请的 key,接着通过添加 MCP 服务生成 travel_tips.html 文件,最终在手机端查看已发布上线的攻略。此外还详细说明了利用通义灵码打造专属 MCP 服务的过程,包括开发计划、代码编写、部署及连接服务等步骤,并提供了自由探索的方向及相关资料链接。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.