本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
DNS 解析日志是一种记录 DNS 请求和响应的基础信息,监控 DNS 服务可以帮助用户识别网络活动并保持系统安全。日志审计服务支持采集 DNS 内网解析日志、公网权威解析日志、GTM 日志。理解 DNS 日志的字段含义,洞察 DNS 日志背后所代表的网络信息,既可以帮助发现和诊断 DNS 解析相关的问题,还可以检测和识别潜在的安全威胁。
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。
通义灵码2.0引入了DeepSeek V3与R1模型,新增Qwen2.5-Max和QWQ模型,支持个性化服务切换。阿里云发布开源推理模型QwQ-32B,在数学、代码及通用能力上表现卓越,性能媲美DeepSeek-R1,且部署成本低。AI程序员功能涵盖表结构设计、前后端代码生成、单元测试与错误排查,大幅提升开发效率。跨语言编程示例中,成功集成DeepSeek-R1生成公告内容。相比1.0版本,2.0支持多款模型,丰富上下文类型,具备多文件修改能力。总结显示,AI程序员生成代码准确度高,但需参考现有工程风格以确保一致性,错误排查功能强大,适合明确问题描述场景。相关链接提供下载与原文参考。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。