NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
本文描述DeepSeek的三个模型的学习过程,其中DeepSeek-R1-Zero模型所涉及的强化学习算法,是DeepSeek最核心的部分之一会重点展示。
本文介绍了如何使用 llmaz 快速部署基于 vLLM 的大语言模型推理服务,并结合 Higress AI 网关实现流量控制、可观测性、故障转移等能力,构建稳定、高可用的大模型服务平台。
在应用开发测试验证通过后、进行生产发布前,为了降低新版本发布带来的风险,期望能够先部署到灰度环境,用小部分业务流量进行全链路灰度验证,验证通过后再全量发布生产。本文主要介绍如何通过阿里云MSE 微服务引擎和云效应用交付平台AppStack 实现灰度发布。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
一家多业务组织的客户来说往往会有多个云账号,分别部署各个业务线的容器服务。但集团可能想使用一套统一的容器镜像仓库(ACR),就会面临多账号内多个ACK共享一套ACR了。那如何合理规划好ACR实例上的命名空间,打通各个业务ACK集群与ACR的网络,包括如何精细化授权,都是客户需要考虑的。
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。