iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而对Kubernetes 语义的原生支持大大增强了Log在Kubernetes场景的采集体验。
本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。
本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
当前阿里云函数计算支持两种类型的函数:事件函数和 HTTP 函数。其中 HTTP 函数结合 HTTP 触发器,能够支持用户直接通过 HTTP 请求利用 Restful API 的方式发起函数调用;通过这种方式,用户无需集成函数计算提供的 SDK 就能实现函数调用,更好地同已有系统的组件及 Web 服...
Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽象性,很少有人基于朴素 Paxos 开发一致性库,本文介绍的实现代码参考了 RAFT 中的概念以及 phxpaxos 的实现和架构设计,实现 multi-paxos 算法,主要针对线程安全和模块抽象进行强化,网络、成员管理、日志、快照、存储以接口形式接入,算法设计为事件驱动,仅包含头文件,便于移植和扩展。
数据库迁云是一个复杂工程,对于传统企业来说,数据库不仅沉淀业务数据,还沉淀了大量业务逻辑,数据迁移过程复杂,风险高。本文借用客户核心系统数据库迁移到PolarDB为例,介绍数据库迁移过程中遇到的挑战、对应的解决方案,供大家参考。