近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
DeepSeek 凭借其卓越的性能和广泛的应用场景,迅速在全球范围内获得了极高的关注度和广泛的用户基础。DeepSeek-R1-Distill 是使用 DeepSeek-R1 生成的样本对开源模型进行蒸馏得到的小模型,拥有更小参数规模,推理成本更低,基准测试同样表现出色。依托于函数计算 FC 算力,Serverless+ AI 开发平台 CAP 现已提供模型服务、应用模版两种部署方式辅助您部署 DeepSeek R1 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中。欢迎您立即体验。
阿里云 AI 搜索开放平台面向企业及开发者提供丰富的组件化AI搜索服务,本文将重点介绍基于AI搜索开放平台内置的 DeepSeek-R1 系列大模型,如何搭建 Elasticsearch AI Assistant。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
相较于 AliyunLogConfig,AliyunPipelineConfig 在配置格式、行为逻辑上做了很大改进,主打灵活、简单、稳定。点击本文,手把手教你如何配置 AliyunPipelineConfig,欢迎大家使用~
小熊油耗在进行架构升级时,进行了广泛的市场调研,深入分析了国内多家云服务商。经过对比多种 IaaS 层云主机方案及 Serverless 产品的部署策略,他们最终选择了阿里云Serverless 应用引擎 SAE。小熊油耗认为,阿里云能给他们提供更强的安全感,安全感来自于阿里云是一个更大的平台:历史最悠久,用户最多、产品最丰富、配套工具众多、技术支持体系成熟,阿里云 SAE,不仅在稳定性上表现卓越,在细粒度的成本控制和极致的弹性能力上表现也非常出色,而且免运维,完美契合了小熊油耗作为一家细分领域小而美的公司的需求。
本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。