作为一个服务百万机器的日志采集 agent,Logtail 目前已经提供了包括日志切分、日志解析(完整正则、JSON、分隔符)、日志过滤在内的常见处理功能,能够应对绝大多数场景的处理需求。但有些时候,由于应用的历史原因或是本身业务日志的复杂性,单一功能可能无法满足所采集日志的处理需求,比如:日志可能...
本文讨论了构建高可用多租户企业级Maven私有仓库服务的必要性,指出传统Nexus和Artifactory开源版缺乏高可用性,商业版虽支持但成本高、扩展性有限。理想的解决方案应包含无状态节点、使用云存储(如阿里云OSS)和集群化的数据库与Elasticsearch。
应用身份服务IDaaS(Identity as a Service)是阿里云原生身份管理系统,可以统一管理各应用中分散的账号,并集中分配应用访问控制权限,降低低效、重复的账号访问配置和运维工作。
通过EMR+DLF数据湖方案,可以为企业提供数据湖内的统一的元数据管理,统一的权限管理,支持多源数据入湖以及一站式数据探索的能力。本方案支持已有EMR集群元数据库使用RDS或内置MySQL数据库迁移DLF,通过统一的元数据管理,多种数据源入湖,搭建高效的数据湖解决方案。
本文介绍如何使用TFJob在ASK+ECI场景下,快速完成基于GPU的TensorFlow分布式训练任务。
iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而对Kubernetes 语义的原生支持大大增强了Log在Kubernetes场景的采集体验。
借助日志治理的现有能力,我们能够在不重启应用的前提下,动态采集任意点位信息,同时由于日志治理在采集信息时会引入链路信息,在分析复杂调用问题时能够起到很好的效果。
时序引擎在可观测场景中的重要性Metrics作为IT可观测性数据的三剑客之一,是可观测场景的重要组成部分,相比Log、Trace数据,具备成本更低、数据源更丰富、适用面更广的特点,SLS在2年多前发布了时序存储引擎,并完全兼容了Prometheus的语法。目前已经有1万+的用户、10万+的实例,每天...