随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做ETL的数据清洗跑批等。
在单体的应用开发场景中涉及并发同步时,大家往往采用Synchronized(同步)或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进程之间的数据同步问题,这种跨机器的锁就是分布式锁。接下来本文将为大家分享分布式锁的最佳实践。
本文基于 2023 云栖大会上关于 Koordinator 分享的实录,介绍小红书通过规模化落地混部技术来大幅提升集群资源效能,降低业务资源成本。
Koordinator v1.4 正式发布!为用户带来更多的计算负载类型和更灵活的资源管理机制