阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
DNS 解析日志是一种记录 DNS 请求和响应的基础信息,监控 DNS 服务可以帮助用户识别网络活动并保持系统安全。日志审计服务支持采集 DNS 内网解析日志、公网权威解析日志、GTM 日志。理解 DNS 日志的字段含义,洞察 DNS 日志背后所代表的网络信息,既可以帮助发现和诊断 DNS 解析相关的问题,还可以检测和识别潜在的安全威胁。
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。
iLogtail 作为日志、时序数据采集器,在 2.0 版本中,全面支持了 SPL 。本文对处理插件进行了梳理,介绍了如何编写 SPL 语句,从插件处理模式迁移到 2.0 版本的 SPL 处理模式,帮助用户实现更加灵活的端上数据处理。
CLR集成为SQL Server提供了强大的扩展能力,突破了T-SQL的限制,极大地拓展了SQL 的应用场景,如:复杂字符串处理、高性能计算、图像处理、机器学习集成、自定义加密解密等,使开发人员能够利用 .NET Framework的丰富功能来处理复杂的数据库任务。
本文对海外泼天流量现状做了快速整理,旨在抛砖引玉,促进国内企业在出海过程中,交流如何构建全球化技术架构的落地经验,相信会有越来越多资深人士分享更深层次的实践。