本文聚焦于线上应用的风险管理,特别是针对“错”(程序运行不符合预期)和“慢”(性能低下或响应迟缓)两大类问题,提出了一个系统化的根因诊断方案。
写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。
阿里云网络拨测业务提供了全球、多种协议、多种网络态势的用户网络性能和用户体验监控场景的全面可观测方案。该文章从拨测场景下,介绍了用户如何快速的构建一套全球用户视角的服务可用性大盘,为客户的业务保驾护航。
政采云基础架构团队技术专家朱海峰介绍了业务网关项目的背景和解决方案。
MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。
本文章旨在帮助读者了解并掌握大模型多模态技术的实际应用,特别是如何构建基于多模态的实用场景。文档通过几个具体的多模态应用场景,如拍立淘、探一下和诗歌相机,展示了这些技术在日常生活中的应用潜力。
本课程是阿里云百炼平台的第二天课程内容,旨在帮助用户了解如何通过阿里云百炼构建和发布自己的AI应用。介绍了如何利用大模型和智能体应用来创建具备强大语言理解和生成能力的AI助手,并通过不同的渠道(如网站、钉钉、微信公众号等)发布这些应用。
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。