ADB MySQL湖仓版数据都在oss,如果想跑spark作业,这个数据库合适吗?我看maxcompute,EMR等好几个服务都支持spark,不知道哪个合适,主要场景是oss做离线计算后,再放入oss
ADB MySQL湖仓版的设计目标是实现OLAP(在线分析处理)场景下的高效查询和分析,它通过存储在OSS(对象存储服务)中的数据提供大规模数据处理能力。尽管其本身不是专为Spark作业设计的,但您可以通过阿里云的数据集成服务如DataWorks或使用Spark直接访问OSS上的数据进行离线计算。对于主要场景是OSS做离线计算后返回结果到OSS的情况,MaxCompute(大数据计算服务)或EMR(E-MapReduce)可能更适合,因为它们更专注于批处理和大规模数据处理任务,并且内置了对Spark的支持。
ADB MySQL湖仓版适合运行Spark作业。
AnalyticDB MySQL湖仓版(3.0)是一个支持湖仓一体化架构的数据分析平台,它不仅能够处理离线和在线分析任务,而且与阿里云的对象存储服务(OSS)紧密集成。以下是一些关键点,说明为什么ADB MySQL湖仓版适合您的主要场景:
综上所述,如果您的主要场景是在OSS中进行离线计算后再次存储到OSS,ADB MySQL湖仓版是一个合适的选择。它不仅支持Spark作业,还提供了实时查询能力和与OSS的紧密集成,有助于简化数据处理流程并可能降低成本。在选择服务时,建议根据您的具体需求和预算进行评估,并考虑每个服务的特点和优势。
如果你的数据都存储在OSS上,并且需要使用Spark进行处理,那么ADB和MySQL湖仓版并不是最佳的选择。相反,建议使用阿里云提供的MaxCompute或者EMR产品。
MaxCompute是阿里云提供的一种大数据计算平台,支持海量数据存储和处理,并提供了完整的数据开发、调度、监控和管理工具。如果你的数据都存储在OSS上,可以通过数据同步将数据导入到MaxCompute中,然后使用Spark on MaxCompute进行数据处理。
EMR(Elastic MapReduce)是阿里云提供的弹性MapReduce服务,支持在云端快速构建、配置和管理Hadoop、Spark、Flink等开源分布式计算框架。如果你需要使用Spark进行数据处理,可以通过创建EMR集群来快速搭建Spark环境,并将数据从OSS中导入到HDFS中进行处理。
综上所述,如果你已经将数据存储在OSS上,并且需要使用Spark进行数据处理,建议使用MaxCompute或EMR产品,这两者都能够很好地支持这种场景,让你更加高效地完成数据处理任务。
ADB MySQL湖仓版是阿里云提供的一个融合型数据库服务,它结合了MySQL的OLTP能力与数据湖存储(OSS)的低成本、高扩展性特点,适合于实时分析和交互式查询场景。由于其数据仓库部分的数据实际存储在OSS中,理论上您可以直接针对OSS中的数据运行Spark作业进行离线计算。
然而,如果您的主要场景是利用Spark对OSS中的数据进行大规模离线计算,并且结果仍需存回OSS或用于后续的分析处理,那么使用MaxCompute或EMR等大数据服务可能更为合适:
MaxCompute:
EMR (E-MapReduce):
综上所述,如果您希望充分利用已有的ADB MySQL湖仓版OSS数据,并专注于离线计算任务,可以选择MaxCompute作为一站式解决方案,因为它对于阿里云内部的服务集成度更高,性能优化更好;而如果需要更灵活地控制Spark环境及兼容更多开源工具,则可选择EMR。
具体选择哪个服务,建议根据您的团队技术栈、项目需求(如是否需要交互式查询、实时计算能力)、成本预算等因素综合考虑。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
阿里云自主研发的云原生数据仓库,具有高并发读写、低峰谷读写、弹性扩展、安全可靠等特性,可支持PB级别数据存储,可广泛应用于BI、机器学习、实时分析、数据挖掘等场景。包含AnalyticDB MySQL版、AnalyticDB PostgreSQL 版。