机器学习PAI我们用了分布式训练(4个Worker),比单机(1个Worker),用PAI-TF进行训练,时间上看分布式训练和单机训练是一样的(甚至还慢一些)。麻烦帮忙看下?
是的,同步模式下,4 worker的设置num_steps / 4就可以了,batch_size设置的是单worker的batch_size,如果设置一样,那数据过了4倍。,此回答整理自钉群“【EasyRec】推荐算法交流群”
首先,分布式训练的目标是加速模型训练过程,通常在大规模数据和/或复杂模型的情况下使用。然而,如果您的分布式训练和单机训练时间相同,甚至更慢,可能有以下几个原因:
为了解决这些问题,您可以尝试以下方法:
最后,您也可以考虑使用PAI的优化功能,例如自动混合精度训练、梯度累积等,这些功能可以帮助加速模型训练过程。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。