Shuffle service模式的特点是是什么
Shuffle service 的最基本工作方式是,在集群每台机器部署一个 shuffle agent 节点,用来归集写给同一 reducer 的 shuffle 数据。可以看到,mapper 生成 shuffle 数据的过程变为mapper将shuffle数据通过网络传输给每个 reducer 对应的 shuffle agent, 而 shuffle agent 归集一个 reducer 来自所有 mapper 的数据,并追加到 shuffle 磁盘文件中,两个过程是流水线并行化起来的。
Shuffle agent 的归集功能将 reducer 的 input 数据从碎片变为了连续数据文件,对 HDD 介质相当友好。由此,整个 shuffle 过程中对磁盘的读写均为连续访问。从标准的 TPCH 等测试中可以看到不同场景下性能可取得百分之几十到几倍的提升,且大幅降低磁盘压力、提升 CPU 等资源利用率。
以上内容摘自《“伏羲”神算》电子书,点击https://developer.aliyun.com/topic/download?id=873
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
MaxCompute(原ODPS)是一项面向分析的大数据计算服务,它以Serverless架构提供快速、全托管的在线数据仓库服务,消除传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您经济并高效的分析处理海量数据。