开发者社区> 问答> 正文

怎样 进行误差分析?

怎样 进行误差分析?

展开
收起
因为相信,所以看见。 2020-05-20 17:23:51 891 0
1 条回答
写回答
取消 提交回答
  • 阿里,我所有的向往

    假设你正在调试猫分类器,然后你取得了90%准确率,相当于10%错误,,在你的开发集上做到这样,这离你希望的目标还有很远。也许你的队员看了一下算法分类出错的例子,注意到算法将一些狗分类为猫,你看看这两只狗,它们看起来是有点像猫,至少乍一看是。所以也许你的队友给你一个建议,如何针对狗的图片优化算法。试想一下,你可以针对狗,收集更多的狗图,或者设计一些只处理狗的算法功能之类的,为了让你的猫分类器在狗图上做的更好,让算法不再将狗分类成猫。所以问题在于,你是不是应该去开始做一个项目专门处理狗?这项目可能需要花费几个月的时间才能让算法在狗图片上犯更少的错误,这样做值得吗?或者与其花几个月做这个项目,有可能最后发现这样一点用都没有。这里有个错误分析流程,可以让你很快知道这个方向是否值得努力。

    这是我建议你做的,首先,收集一下,比如说100个错误标记的开发集样本,然后手动检查,一次只看一个,看看你的开发集里有多少错误标记的样本是狗。现在,假设事实上,你的100个错误标记样本中只有5%是狗,就是说在100个错误标记的开发集样本中,有5个是狗。这意味着100个样本,在典型的100个出错样本中,即使你完全解决了狗的问题,你也只能修正这100个错误中的5个。或者换句话说,如果只有5%的错误是狗图片,那么如果你在狗的问题上花了很多时间,那么你最多只能希望你的错误率从10%下降到9.5%,对吧?错误率相对下降了5%(总体下降了0.5%,100的错误样本,错误率为10%,则样本为1000),那就是10%下降到9.5%。你就可以确定这样花时间不好,或者也许应该花时间,但至少这个分析给出了一个上限。如果你继续处理狗的问题,能够改善算法性能的上限,对吧?在机器学习中,有时我们称之为性能上限,就意味着,最好能到哪里,完全解决狗的问题可以对你有多少帮助。

    但现在,假设发生了另一件事,假设我们观察一下这100个错误标记的开发集样本,你发现实际有50张图都是狗,所以有50%都是狗的照片,现在花时间去解决狗的问题可能效果就很好。这种情况下,如果你真的解决了狗的问题,那么你的错误率可能就从10%下降到5%了。然后你可能觉得让错误率减半的方向值得一试,可以集中精力减少错误标记的狗图的问题。

    我知道在机器学习中,有时候我们很鄙视手工操作,或者使用了太多人为数值。但如果你要搭建应用系统,那这个简单的人工统计步骤,错误分析,可以节省大量时间,可以迅速决定什么是最重要的,或者最有希望的方向。实际上,如果你观察100个错误标记的开发集样本,也许只需要5到10分钟的时间,亲自看看这100个样本,并亲自统计一下有多少是狗。根据结果,看看有没有占到5%、50%或者其他东西。这个在5到10分钟之内就能给你估计这个方向有多少价值,并且可以帮助你做出更好的决定,是不是把未来几个月的时间投入到解决错误标记的狗图这个问题。image.png image.png

    2020-05-20 17:24:57
    赞同 展开评论 打赏
问答地址:
问答排行榜
最热
最新

相关电子书

更多
纯干货|机器学习中梯度下降法的分类及对比分析 立即下载
纯干货 | 机器学习中梯度下降法的分类及对比分析 立即下载
时间序列数据的处理 立即下载