副本(replica/copy)指在分布式系统中为数据或服务提供的冗余。对于数据副本指在不同的节点上持久化同一份数据,当出现某一个节点的存储的数据丢失时,可以从副本上读到数据。数据副本是分布式系统解决数据丢失异常的唯一手段。另一类副本是服务副本,指数个节点提供某种相同的服务,这种服务一般并不依赖于节点的本地存储,其所需数据一般来自其他节点。
副本协议是贯穿整个分布式系统的理论核心。
副本一致性
分布式系统通过副本控制协议,使得从系统外部读取系统内部各个副本的数据在一定的约束条件下相同,称之为副本一致性(consistency)。副本一致性是针对分布式系统而言的,不是针对某一个副本而言。
- 强一致性(strong consistency):任何时刻任何用户或节点都可以读到最近一次成功更新的副本数据。强一致性是程度最高的一致性要求,也是实践中最难以实现的一致性。
- 单调一致性(monotonic consistency):任何时刻,任何用户一旦读到某个数据在某次更新后的值,这个用户不会再读到比这个值更旧的值。单调一致性是弱于强一致性却非常实用的一种一致性级别。因为通常来说,用户只关心从己方视角观察到的一致性,而不会关注其他用户的一致性情况。
- 会话一致性(session consistency):任何用户在某一次会话内一旦读到某个数据在某次更新后的值,这个用户在这次会话过程中不会再读到比这个值更旧的值。会话一致性通过引入会话的概念,在单调一致性的基础上进一步放松约束,会话一致性只保证单个用户单次会话内数据的单调修改,对于不同用户间的一致性和同一用户不同会话间的一致性没有保障。实践中有许多机制正好对应会话的概念,例如php 中的session 概念。
- 最终一致性(eventual consistency):最终一致性要求一旦更新成功,各个副本上的数据最终将达 到完全一致的状态,但达到完全一致状态所需要的时间不能保障。对于最终一致性系统而言,一个 用户只要始终读取某一个副本的数据,则可以实现类似单调一致性的效果,但一旦用户更换读取的 副本,则无法保障任何一致性。
- 弱一致性(week consistency):一旦某个更新成功,用户无法在一个确定时间内读到这次更新的 值,且即使在某个副本上读到了新的值,也不能保证在其他副本上可以读到新的值。弱一致性系统 一般很难在实际中使用,使用弱一致性系统需要应用方做更多的工作从而使得系统可用。