如何在Pyspark中转置以下数据框?
想法是实现下面显示的结果。
import pandas as pd
d = {'id' : pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']),
'place' : pd.Series(['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']),
'value' : pd.Series([10, 30, 20, 10, 30, 20, 10, 30, 20], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']),
'attribute' : pd.Series(['size', 'height', 'weigth', 'size', 'height', 'weigth','size', 'height', 'weigth'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'])}
id place value attribute
a 1 A 10 size
b 1 A 30 height
c 1 A 20 weigth
d 2 A 10 size
e 2 A 30 height
f 2 A 20 weigth
g 3 A 10 size
h 3 A 30 height
i 3 A 20 weigth
d = {'id' : pd.Series([1, 2, 3], index=['a', 'b', 'c']),
'place' : pd.Series(['A', 'A', 'A'], index=['a', 'b', 'c']),
'size' : pd.Series([10, 30, 20], index=['a', 'b', 'c']),
'height' : pd.Series([10, 30, 20], index=['a', 'b', 'c']),
'weigth' : pd.Series([10, 30, 20], index=['a', 'b', 'c'])}
df = pd.DataFrame(d)
print(df)
id place size height weigth
a 1 A 10 10 10
b 2 A 30 30 30
c 3 A 20 20 20
首先,我认为您的样本输出不正确。对于每个id,您的输入数据的大小设置为10,高度设置为30,权重设置为20,但是对于id 1,所需的输出设置为10,如果这真的是这样,请解释一下。如果这是一个错误,那么你可以使用pivot函数。例:
from pyspark.sql.functions import first
l =[( 1 ,'A', 10, 'size' ),
( 1 , 'A', 30, 'height' ),
( 1 , 'A', 20, 'weigth' ),
( 2 , 'A', 10, 'size' ),
( 2 , 'A', 30, 'height' ),
( 2 , 'A', 20, 'weigth' ),
( 3 , 'A', 10, 'size' ),
( 3 , 'A', 30, 'height' ),
( 3 , 'A', 20, 'weigth' )]
df = spark.createDataFrame(l, ['id','place', 'value', 'attribute'])
df.groupBy(df.id, df.place).pivot('attribute').agg(first("value")).show()
+---+-----+------+----+------+
| id|place|height|size|weigth|
+---+-----+------+----+------+
| 2| A| 30| 10| 20|
| 3| A| 30| 10| 20|
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。