Java并发编程系列3 - synchronized

简介: 看这篇文章前,建议大家先看我前面的文章《Java并发编程系列1-基础知识》,否则里面的相关知识看不懂,特别是并发编程相关的可见性、有序性,以及内存模型JMM等。在Java中,关键字synchronized可以保证在同一个时刻,只有一个线程可以执行某个方法或者某个代码块(主要是对方法或者代码块中存在共享数据的操作),同时我们还应该注意到synchronized另外一个重要的作用,synchronized可保证一个线程的变化(主要是共享数据的变化)被其他线程所看到(保证可见性,完全可以替代Volatile功能)。

MVB156~RWDR`HZ$K)3J9DQA.jpg

主要讲解synchronized的应用方式和内存语义。


前言


看这篇文章前,建议大家先看我前面的文章《Java并发编程系列1-基础知识》,否则里面的相关知识看不懂,特别是并发编程相关的可见性、有序性,以及内存模型JMM等。

在Java中,关键字synchronized可以保证在同一个时刻,只有一个线程可以执行某个方法或者某个代码块(主要是对方法或者代码块中存在共享数据的操作),同时我们还应该注意到synchronized另外一个重要的作用,synchronized可保证一个线程的变化(主要是共享数据的变化)被其他线程所看到(保证可见性,完全可以替代Volatile功能)。


synchronized的三种应用方式


synchronized关键字最主要有以下3种应用方式,下面分别介绍:

  • 修饰实例方法,作用于当前实例加锁,进入同步代码前要获得当前实例的锁;
  • 修饰静态方法,作用于当前类对象加锁,进入同步代码前要获得当前类对象的锁;
  • 修饰代码块,指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。


synchronized作用于实例方法

所谓的实例对象锁就是用synchronized修饰实例对象中的实例方法,注意是实例方法不包括静态方法,如下:

public class AccountingSync implements Runnable {
    //共享资源(临界资源)
    static int i = 0;
    // synchronized 修饰实例方法
    public synchronized void increase() {
        i ++;
    }
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String args[]) throws InterruptedException {
        AccountingSync instance = new AccountingSync();
        Thread t1 = new Thread(instance);
        Thread t2 = new Thread(instance);
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("static, i output:" + i);
    }
}
/**
 * 输出结果:
 * static, i output:2000000
 */


如果在函数increase()前不加synchronized,因为i++不具备原子性,所以最终结果会小于2000000,具体分析可以参考文章《Java并发编程系列2-volatile》。下面这点非常重要:

一个对象只有一把锁,当一个线程获取了该对象的锁之后,其他线程无法获取该对象的锁,所以无法访问该对象的其他synchronized实例方法,但是其他线程还是可以访问该实例对象的其他非synchronized方法。


但是一个线程 A 需要访问实例对象 obj1 的 synchronized 方法 f1(当前对象锁是obj1),另一个线程 B 需要访问实例对象 obj2 的 synchronized 方法 f2(当前对象锁是obj2),这样是允许的:

public class AccountingSyncBad implements Runnable {
    //共享资源(临界资源)
    static int i = 0;
    // synchronized 修饰实例方法
    public synchronized void increase() {
        i ++;
    }
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String args[]) throws InterruptedException {
        // new 两个AccountingSync新实例
        Thread t1 = new Thread(new AccountingSyncBad());
        Thread t2 = new Thread(new AccountingSyncBad());
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("static, i output:" + i);
    }
}
/**
 * 输出结果:
 * static, i output:1224617
 */


上述代码与前面不同的是我们同时创建了两个新实例AccountingSyncBad,然后启动两个不同的线程对共享变量i进行操作,但很遗憾操作结果是1224617而不是期望结果2000000,因为上述代码犯了严重的错误,虽然我们使用synchronized修饰了increase方法,但却new了两个不同的实例对象,这也就意味着存在着两个不同的实例对象锁,因此t1和t2都会进入各自的对象锁,也就是说t1和t2线程使用的是不同的锁,因此线程安全是无法保证的。

每个对象都有一个对象锁,不同的对象,他们的锁不会互相影响。


解决这种困境的的方式是将synchronized作用于静态的increase方法,这样的话,对象

锁就当前类对象,由于无论创建多少个实例对象,但对于的类对象拥有只有一个,所有在这样的情况下对象锁就是唯一的。下面我们看看如何使用将synchronized作用于静态的increase方法。


synchronized作用于静态方法

当synchronized作用于静态方法时,其锁就是当前类的class锁,不属于某个对象。

当前类class锁被获取,不影响对象锁的获取,两者互不影响。

由于静态成员不专属于任何一个实例对象,是类成员,因此通过class对象锁可以控制静态成员的并发操作。需要注意的是如果一个线程A调用一个实例对象的非static synchronized方法,而线程B需要调用这个实例对象所属类的静态synchronized方法,不会发生互斥现象,因为访问静态synchronized方法占用的锁是当前类的class对象,而访问非静态synchronized方法占用的锁是当前实例对象锁,看如下代码:

public class AccountingSyncClass implements Runnable {
    static int i = 0;
    /**
     * 作用于静态方法,锁是当前class对象,也就是
     * AccountingSyncClass类对应的class对象
     */
    public static synchronized void increase() {
        i++;
    }
    // 非静态,访问时锁不一样不会发生互斥
    public synchronized void increase4Obj() {
        i++;
    }
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            increase();
        }
    }
    public static void main(String[] args) throws InterruptedException {
        //new新实例
        Thread t1=new Thread(new AccountingSyncClass());
        //new新实例
        Thread t2=new Thread(new AccountingSyncClass());
        //启动线程
        t1.start();t2.start();
        t1.join();t2.join();
        System.out.println(i);
    }
}
/**
 * 输出结果:
 * 2000000
 */

由于synchronized关键字修饰的是静态increase方法,与修饰实例方法不同的是,其锁对象是当前类的class对象。注意代码中的increase4Obj方法是实例方法,其对象锁是当前实例对象,如果别的线程调用该方法,将不会产生互斥现象,毕竟锁对象不同,但我们应该意识到这种情况下可能会发现线程安全问题(操作了共享静态变量i)。


synchronized同步代码块

在某些情况下,我们编写的方法体可能比较大,同时存在一些比较耗时的操作,而需要同步的代码又只有一小部分,如果直接对整个方法进行同步操作,可能会得不偿失,此时我们可以使用同步代码块的方式对需要同步的代码进行包裹,这样就无需对整个方法进行同步操作了,同步代码块的使用示例如下:

public class AccountingSync2 implements Runnable {
    static AccountingSync2 instance = new AccountingSync2(); // 饿汉单例模式
    static int i=0;
    @Override
    public void run() {
        //省略其他耗时操作....
        //使用同步代码块对变量i进行同步操作,锁对象为instance
        synchronized(instance){
            for(int j=0;j<1000000;j++){
                i++;
            }
        }
    }
    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(instance);
        Thread t2=new Thread(instance);
        t1.start();t2.start();
        t1.join();t2.join();
        System.out.println(i);
    }
}
/**
 * 输出结果:
 * 2000000
 */


从代码看出,将synchronized作用于一个给定的实例对象instance,即当前实例对象就是锁对象,每次当线程进入synchronized包裹的代码块时就会要求当前线程持有instance实例对象锁,如果当前有其他线程正持有该对象锁,那么新到的线程就必须等待,这样也就保证了每次只有一个线程执行i++;操作。当然除了instance作为对象外,我们还可以使用this对象(代表当前实例)或者当前类的class对象作为锁,如下代码:

//this,当前实例对象锁
synchronized(this){
    for(int j=0;j<1000000;j++){
        i++;
    }
}
//class对象锁
synchronized(AccountingSync.class){
    for(int j=0;j<1000000;j++){
        i++;
    }
}


synchronized禁止指令重排分析


指令重排的情况,可以参考文章《Java并发编程系列1-基础知识》


我们先看如下代码:

class MonitorExample {
    int a = 0;
    public synchronized void writer() {  //1
        a++;                             //2
    }                                    //3
    public synchronized void reader() {  //4
        int i = a;                       //5
        //……
    }                                    //6
}


假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens before规则,这个过程包含的happens before关系可以分为两类:

  • 根据程序次序规则,1 happens before 2, 2 happens before 3; 4 happens before 5, 5 happens before 6。
  • 根据监视器锁规则,3 happens before 4。
  • 根据happens before的传递性,2 happens before 5。


上述happens before 关系的图形化表现形式如下:

image.gif220QD]ZTO3[RJPDY_[WJVDH.png

在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示监视器锁规则;蓝色箭头表示组合这些规则后提供的happens before保证。

上图表示在线程A释放了锁之后,随后线程B获取同一个锁。在上图中,2 happens before 5。因此,线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立刻变得对B线程可见。


synchronized的可重入性


从互斥锁的设计上来说,当一个线程试图操作一个由其他线程持有的对象锁的临界资源时,将会处于阻塞状态,但当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入锁,请求将会成功。

synchronized就是可重入锁,因此一个线程调用synchronized方法的同时,在其方法体内部调用该对象另一个synchronized方法是允许的,如下:

public class AccountingSync implements Runnable{
    static AccountingSync instance=new AccountingSync();
    static int i=0;
    static int j=0;
    @Override
    public void run() {
        for(int j=0;j<1000000;j++){
            //this,当前实例对象锁
            synchronized(this){
                i++;
                increase();//synchronized的可重入性
            }
        }
    }
    public synchronized void increase(){
        j++;
    }
    public static void main(String[] args) throws InterruptedException {
        Thread t1=new Thread(instance);
        Thread t2=new Thread(instance);
        t1.start();t2.start();
        t1.join();t2.join();
        System.out.println(i);
    }
}

当前实例对象锁后进入synchronized代码块执行同步代码,并在代码块中调用了当前实例对象的另外一个synchronized方法,再次请求当前实例锁时,将被允许。需要特别注意另外一种情况,当子类继承父类时,子类也是可以通过可重入锁调用父类的同步方法。注意由于synchronized是基于monitor实现的,因此每次重入,monitor中的计数器仍会加1。


总结


该文章给大家讲解了synchronized的三种应用方式,指令重排情况分析,以及synchronized的可重入性,通过该文章,基本可以掌握synchronized的使用姿势,以及可能会遇到的坑。关于“线程中断与synchronized”的相关知识,因为篇幅原因就不写了,大家可以到网上查一下相关资料,进一步学习。

相关文章
|
17天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
21 0
|
19天前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
3天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
26 12
|
22天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
22天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
16天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
16天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
40 3
|
22天前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
83 6
|
21天前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
36 2
|
22天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
54 1
下一篇
DataWorks