管道聚合处理来自其他聚合而不是文档集的输出,将信息添加到输出树中。
注:关于脚本聚合目前在本文中暂时不会涉及。
主要有如下两种管道聚合方式:
- parent
- sibling
下面一一介绍ES定义的管道聚合。
同级管道聚合,它计算同级聚合中指定度量的平均值。同级聚合必须是多桶聚合,针对的是度量聚合(metric Aggregation)。
示例如下:
1{ 2 "avg_bucket": { 3 "buckets_path": "the_sum" // @1 4 } 5}
- buckets_path:指定聚合的名称,支持多级嵌套聚合。
其他参数: - gap_policy
当管道聚合遇到不存在的值,有点类似于term等聚合的(missing)时所采取的策略,可选择值为:skip、insert_zeros。 - skip:此选项将丢失的数据视为bucket不存在。它将跳过桶并使用下一个可用值继续计算。
- insert_zeros:默认使用0代替。
- format
用于格式化聚合桶的输出(key)。
示例如下:
1POST /_search 2{ 3 "size": 0, 4 "aggs": { 5 "sales_per_month": { // @1 6 "date_histogram": { 7 "field": "date", 8 "interval": "month" 9 }, 10 "aggs": { // @2 11 "sales": { 12 "sum": { 13 "field": "price" 14 } 15 } 16 } 17 }, 18 "avg_monthly_sales": { // @3 19 "avg_bucket": { 20 "buckets_path": "sales_per_month>sales" 21 } 22 } 23 } 24}
代码@1:首先定义第一级聚合(按月)直方图聚合。
代码@2:定义第二级聚合,在按月聚合的基础上,对每个月的文档求sum。
代码@3:对上面的聚合求平均值。
其返回结果如下:
1{ 2 ... // 省略 3 "aggregations": { 4 "sales_per_month": { 5 "buckets": [ 6 { 7 "key_as_string": "2015/01/01 00:00:00", 8 "key": 1420070400000, 9 "doc_count": 3, 10 "sales": { 11 "value": 550.0 12 } 13 }, 14 { 15 "key_as_string": "2015/02/01 00:00:00", 16 "key": 1422748800000, 17 "doc_count": 2, 18 "sales": { 19 "value": 60.0 20 } 21 } 22 ] 23 }, 24 "avg_monthly_sales": { // 这是对二级聚合的结果再进行一次求平均值聚合。 25 "value": 328.33333333333333 26 } 27 } 28}
对应的JAVA示例如下:
1public static void test_pipeline_avg_buncket_aggregation() { 2 RestHighLevelClient client = EsClient.getClient(); 3 try { 4 SearchRequest searchRequest = new SearchRequest(); 5 searchRequest.indices("aggregations_index02"); 6 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); 7 AggregationBuilder aggregationBuild = AggregationBuilders.terms("seller_agg") 8 .field("sellerId") 9 .subAggregation(AggregationBuilders.sum("seller_num_agg") 10 .field("num") 11 ) 12 ; 13 sourceBuilder.aggregation(aggregationBuild); 14 15 // 添加 avg bucket pipeline 16 sourceBuilder.aggregation(new AvgBucketPipelineAggregationBuilder("seller_num_agg_av", "seller_agg>seller_num_agg")); 17 sourceBuilder.size(0); 18 19 searchRequest.source(sourceBuilder); 20 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT); 21 System.out.println(result); 22 } catch (Throwable e) { 23 e.printStackTrace(); 24 } finally { 25 EsClient.close(client); 26 } 27 }
同级管道聚合,百分位管道聚合。其JAVA示例如下:
1public static void test_Percentiles_buncket_aggregation() { 2 RestHighLevelClient client = EsClient.getClient(); 3 try { 4 SearchRequest searchRequest = new SearchRequest(); 5 searchRequest.indices("aggregations_index02"); 6 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); 7 AggregationBuilder aggregationBuild = AggregationBuilders.terms("seller_agg") 8 .field("sellerId") 9 .subAggregation(AggregationBuilders.sum("seller_num_agg") 10 .field("num") 11 ) 12 ; 13 sourceBuilder.aggregation(aggregationBuild); 14 15 // 添加 avg bucket pipeline 16 sourceBuilder.aggregation(new PercentilesBucketPipelineAggregationBuilder("seller_num_agg_av", "seller_agg>seller_num_agg")); 17 sourceBuilder.size(0); 18 19 searchRequest.source(sourceBuilder); 20 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT); 21 System.out.println(result); 22 } catch (Throwable e) { 23 e.printStackTrace(); 24 } finally { 25 EsClient.close(client); 26 } 27 }
其返回值如下:
1{ 2 ... // 省略其他属性 3 "aggregations":{ 4 "lterms#seller_agg":{ 5 "doc_count_error_upper_bound":0, 6 "sum_other_doc_count":12, 7 "buckets":[ 8 { 9 "key":45, 10 "doc_count":567, 11 "sum#seller_num_agg":{ 12 "value":911 13 } 14 }, 15 { 16 "key":31, 17 "doc_count":324, 18 "sum#seller_num_agg":{ 19 "value":353 20 } 21 } // 省略其他桶的显示 22 ] 23 }, 24 "percentiles_bucket#seller_num_agg_av":{ 25 "values":{ 26 "1.0":5, 27 "5.0":5, 28 "25.0":10, 29 "50.0":20, 30 "75.0":290, 31 "95.0":911, 32 "99.0":911 33 } 34 } 35 } 36}
累积管道聚合,就是就是依次将每个管道的sum聚合进行累加。
其语法(restfull)如下:
1{ 2 "cumulative_sum": { 3 "buckets_path": "the_sum" 4 } 5}
支持的参数说明:
- buckets_path
桶聚合名称,作为管道聚合的输入信息。 - format
格式化key。
使用示例如下:
1POST /sales/_search 2{ 3 "size": 0, 4 "aggs" : { 5 "sales_per_month" : { 6 "date_histogram" : { 7 "field" : "date", 8 "interval" : "month" 9 }, 10 "aggs": { 11 "sales": { 12 "sum": { 13 "field": "price" 14 } 15 }, 16 "cumulative_sales": { 17 "cumulative_sum": { 18 "buckets_path": "sales" 19 } 20 } 21 } 22 } 23 } 24}
其返回结果如下:
1{ 2 "took": 11, 3 "timed_out": false, 4 "_shards": ..., 5 "hits": ..., 6 "aggregations": { 7 "sales_per_month": { 8 "buckets": [ 9 { 10 "key_as_string": "2015/01/01 00:00:00", 11 "key": 1420070400000, 12 "doc_count": 3, 13 "sales": { 14 "value": 550.0 15 }, 16 "cumulative_sales": { 17 "value": 550.0 18 } 19 }, 20 { 21 "key_as_string": "2015/02/01 00:00:00", 22 "key": 1422748800000, 23 "doc_count": 2, 24 "sales": { 25 "value": 60.0 26 }, 27 "cumulative_sales": { 28 "value": 610.0 29 } 30 }, 31 { 32 "key_as_string": "2015/03/01 00:00:00", 33 "key": 1425168000000, 34 "doc_count": 2, 35 "sales": { 36 "value": 375.0 37 }, 38 "cumulative_sales": { 39 "value": 985.0 40 } 41 } 42 ] 43 } 44 } 45}
从结果可知,cumulative_sales的值等于上一个cumulative_sales + 当前桶的sum聚合。
对应的JAVA示例如下:
1{ 2 "aggregations":{ 3 "date_histogram#createTime_histogram":{ 4 "buckets":{ 5 "2015-12-01 00:00:00":{ 6 "key_as_string":"2015-12-01 00:00:00", 7 "key":1448928000000, 8 "doc_count":6, 9 "sum#seller_num_agg":{ 10 "value":16 11 }, 12 "simple_value#Cumulative_Seller_num_agg":{ 13 "value":16 14 } 15 }, 16 "2016-01-01 00:00:00":{ 17 "key_as_string":"2016-03-01 00:00:00", 18 "key":1456790400000, 19 "doc_count":10, 20 "sum#seller_num_agg":{ 21 "value":11 22 }, 23 "simple_value#Cumulative_Seller_num_agg":{ 24 "value":31 25 } 26 } 27 // ... 忽略 28 } 29 } 30 } 31}
一种父管道聚合,它对其父多桶聚合的桶进行排序。并可以指定多个排序字段。每个bucket可以根据它的_key、_count或子聚合进行排序。此外,可以设置from和size的参数,以便截断结果桶。
使用语法如下:
1{ 2 "bucket_sort": { 3 "sort": [ 4 {"sort_field_1": {"order": "asc"}}, 5 {"sort_field_2": {"order": "desc"}}, 6 "sort_field_3" 7 ], 8 "from": 1, 9 "size": 3 10 } 11}
支持的参数说明如下:
- sort
定义排序结构。 - from
用与对父聚合的桶进行截取,该值之前的所有桶将忽略,也就是不参与排序,默认为0。 - size
返回的桶数。默认为父聚合的所有桶。 - gap_policy
当管道聚合遇到不存在的值,有点类似于term等聚合的(missing)时所采取的策略,可选择值为:skip、insert_zeros。 - skip:此选项将丢失的数据视为bucket不存在。它将跳过桶并使用下一个可用值继续计算。
- insert_zeros:默认使用0代替。
官方示例如下:
1POST /sales/_search 2{ 3 "size": 0, 4 "aggs" : { 5 "sales_per_month" : { 6 "date_histogram" : { 7 "field" : "date", 8 "interval" : "month" 9 }, 10 "aggs": { 11 "total_sales": { 12 "sum": { 13 "field": "price" 14 } 15 }, 16 "sales_bucket_sort": { 17 "bucket_sort": { 18 "sort": [ 19 {"total_sales": {"order": "desc"}} 20 ], 21 "size": 3 22 } 23 } 24 } 25 } 26 } 27}
对应的JAVA示例如下:
1public static void test_bucket_sort_Aggregation() { 2 RestHighLevelClient client = EsClient.getClient(); 3 try { 4 5 //构建日期直方图聚合 时间间隔,示例中按月统计 6 DateHistogramInterval interval = new DateHistogramInterval("1M"); 7 SearchRequest searchRequest = new SearchRequest(); 8 searchRequest.indices("aggregations_index02"); 9 SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); 10 AggregationBuilder aggregationBuild = AggregationBuilders.dateHistogram("createTime_histogram") 11 .field("createTime") 12 .dateHistogramInterval(interval) 13 .keyed(true) 14 .subAggregation(AggregationBuilders.sum("seller_num_agg") 15 .field("num") 16 ) 17 .subAggregation(new BucketSortPipelineAggregationBuilder("seller_num_agg_sort", Arrays.asList( 18 new FieldSortBuilder("seller_num_agg").order(SortOrder.ASC))) 19 .from(0) 20 .size(3)) 21 // BucketSortPipelineAggregationBuilder(String name, List<FieldSortBuilder> sorts) 22 .subAggregation(new CumulativeSumPipelineAggregationBuilder("Cumulative_Seller_num_agg", "seller_num_agg")) 23 // .format("yyyy-MM-dd") // 对key的格式化 24 ; 25 sourceBuilder.aggregation(aggregationBuild); 26 sourceBuilder.size(0); 27 sourceBuilder.query( 28 QueryBuilders.termQuery("sellerId", 24) 29 ); 30 searchRequest.source(sourceBuilder); 31 SearchResponse result = client.search(searchRequest, RequestOptions.DEFAULT); 32 System.out.println(result); 33 } catch (Throwable e) { 34 e.printStackTrace(); 35 } finally { 36 EsClient.close(client); 37 } 38 }
返回值:
1{ 2 "aggregations":{ 3 "date_histogram#createTime_histogram":{ 4 "buckets":{ 5 "2016-04-01 00:00:00":{ 6 "key_as_string":"2016-04-01 00:00:00", 7 "key":1459468800000, 8 "doc_count":2, 9 "sum#seller_num_agg":{ 10 "value":2 11 }, 12 "simple_value#Cumulative_Seller_num_agg":{ 13 "value":2 14 } 15 }, 16 "2017-05-01 00:00:00":{ 17 "key_as_string":"2017-05-01 00:00:00", 18 "key":1493596800000, 19 "doc_count":3, 20 "sum#seller_num_agg":{ 21 "value":3 22 }, 23 "simple_value#Cumulative_Seller_num_agg":{ 24 "value":5 25 } 26 }, 27 "2017-02-01 00:00:00":{ 28 "key_as_string":"2017-02-01 00:00:00", 29 "key":1485907200000, 30 "doc_count":4, 31 "sum#seller_num_agg":{ 32 "value":4 33 }, 34 "simple_value#Cumulative_Seller_num_agg":{ 35 "value":9 36 } 37 } 38 } 39 } 40 }
与 avg类似。
与 avg类似。
与 avg类似。
与 avg类似。