netty系列之:protobuf在UDP协议中的使用

简介: netty中提供的protobuf编码解码器可以让我们直接在netty中传递protobuf对象。同时netty也提供了支持UDP协议的channel叫做NioDatagramChannel。如果直接使用NioDatagramChannel,那么我们可以直接从channel中读写UDP对象:DatagramPacket。

简介

netty中提供的protobuf编码解码器可以让我们直接在netty中传递protobuf对象。同时netty也提供了支持UDP协议的channel叫做NioDatagramChannel。如果直接使用NioDatagramChannel,那么我们可以直接从channel中读写UDP对象:DatagramPacket。

但是DatagramPacket中封装的是ByteBuf对象,如果我们想要向UDP channel中写入对象,那么需要一个将对象转换成为ByteBuf的方法,很明显netty提供的protobuf编码解码器就是一个这样的方法。

那么可不可以将NioDatagramChannel和ProtobufDecoder,ProtobufEncoder相结合呢?

NioDatagramChannel中channel读写的对象都是DatagramPacket。而ProtobufDecoder与ProtobufEncoder是将protoBuf对象MessageLiteOrBuilder跟ByteBuf进行转换,所以两者是不能直接结合使用的。

怎么才能在UDP中使用protobuf呢?今天要向大家介绍netty专门为UDP创建的编码解码器DatagramPacketEncoder和DatagramPacketDecoder。

UDP在netty中的表示

UDP的数据包在netty中是怎么表示呢?

netty提供了一个类DatagramPacket来表示UDP的数据包。netty中的UDP channel就是使用DatagramPacket来进行数据的传递。先看下DatagramPacket的定义:

public class DatagramPacket
        extends DefaultAddressedEnvelope<ByteBuf, InetSocketAddress> implements ByteBufHolder

DatagramPacket继承自DefaultAddressedEnvelope,并且实现了ByteBufHolder接口。

其中的ByteBuf是数据包中需要传输的数据,InetSocketAddress是数据包需要发送到的地址。

而这个DefaultAddressedEnvelope又是继承自AddressedEnvelope:

public class DefaultAddressedEnvelope<M, A extends SocketAddress> implements AddressedEnvelope<M, A>

DefaultAddressedEnvelopee中有三个属性,分别是message,sender和recipient:

private final M message;
    private final A sender;
    private final A recipient;

这三个属性分别代表了要发送的消息,发送方的地址和接收方的地址。

DatagramPacketEncoder

DatagramPacketEncoder是一个DatagramPacket的编码器,所以要编码的对象就是DatagramPacket。上一节我们也提到了DatagramPacket实际上继承自AddressedEnvelope。所有的DatagramPacket都是一个AddressedEnvelope对象,所以为了通用起见,DatagramPacketEncoder接受的要编码的对象是AddressedEnvelope。

我们先来看下DatagramPacketEncoder的定义:

public class DatagramPacketEncoder<M> extends MessageToMessageEncoder<AddressedEnvelope<M, InetSocketAddress>> {

DatagramPacketEncoder是一个MessageToMessageEncoder,它接受一个AddressedEnvelope的泛型,也就是我们要encoder的对象类型。

那么DatagramPacketEncoder会将AddressedEnvelope编码成什么呢?

DatagramPacketEncoder中定义了一个encoder,这个encoder可以在DatagramPacketEncoder初始化的时候传入:

private final MessageToMessageEncoder<? super M> encoder;
    public DatagramPacketEncoder(MessageToMessageEncoder<? super M> encoder) {
        this.encoder = checkNotNull(encoder, "encoder");
    }

实际上DatagramPacketEncoder中实现的encode方法,底层就是调用encoder的encode方法,我们来看下他的实现:

protected void encode(
            ChannelHandlerContext ctx, AddressedEnvelope<M, InetSocketAddress> msg, List<Object> out) throws Exception {
        assert out.isEmpty();
        encoder.encode(ctx, msg.content(), out);
        if (out.size() != 1) {
            throw new EncoderException(
                    StringUtil.simpleClassName(encoder) + " must produce only one message.");
        }
        Object content = out.get(0);
        if (content instanceof ByteBuf) {
            // Replace the ByteBuf with a DatagramPacket.
            out.set(0, new DatagramPacket((ByteBuf) content, msg.recipient(), msg.sender()));
        } else {
            throw new EncoderException(
                    StringUtil.simpleClassName(encoder) + " must produce only ByteBuf.");
        }
    }

上面的逻辑就是从AddressedEnvelope中调用msg.content()方法拿到AddressedEnvelope中的内容,然后调用encoder的encode方法将其编码并写入到out中。

最后调用out的get方法拿出编码之后的内容,再封装到DatagramPacket中去。

所以不管encoder最后返回的是什么对象,最后都会被封装到DatagramPacket中,并返回。

总结一下,DatagramPacketEncoder传入一个AddressedEnvelope对象,调用encoder将AddressedEnvelope的内容进行编码,最后封装成为一个DatagramPacket并返回。

鉴于protoBuf的优异对象序列化能力,我们可以将ProtobufEncoder传入到DatagramPacketEncoder中,做为真实的encoder:

ChannelPipeline pipeline = ...;
pipeline.addLast("udpEncoder", new DatagramPacketEncoder(new ProtobufEncoder(...));

这样就把ProtobufEncoder和DatagramPacketEncoder结合起来了。

DatagramPacketDecoder

DatagramPacketDecoder是和DatagramPacketEncoder相反的操作,它是将接受到的DatagramPacket对象进行解码,至于解码成为什么对象,也是由传入其中的decoder属性来决定的:

public class DatagramPacketDecoder extends MessageToMessageDecoder<DatagramPacket> {
    private final MessageToMessageDecoder<ByteBuf> decoder;
    public DatagramPacketDecoder(MessageToMessageDecoder<ByteBuf> decoder) {
        this.decoder = checkNotNull(decoder, "decoder");
    }

DatagramPacketDecoder要解码的对象是DatagramPacket,而传入的decoder要解码的对象是ByteBuf。

所以我们需要一个能够解码ByteBuf的decoder实现,而和protoBuf对应的就是ProtobufDecoder。

先来看下DatagramPacketDecoder的decoder方法是怎么实现的:

protected void decode(ChannelHandlerContext ctx, DatagramPacket msg, List<Object> out) throws Exception {
        decoder.decode(ctx, msg.content(), out);
    }

可以看到DatagramPacketDecoder的decoder方法很简单,就是从DatagramPacket中拿到content内容,然后交由decoder去decode。

如果使用ProtobufDecoder作为内置的decoder,则可以将ByteBuf对象decode成为ProtoBuf对象,刚好和之前讲过的encode相呼应。

将ProtobufDecoder传入DatagramPacketDecoder也非常简单,我们可以这样做:

ChannelPipeline pipeline = ...;
   pipeline.addLast("udpDecoder", new DatagramPacketDecoder(new ProtobufDecoder(...));

这样一个DatagramPacketDecoder就完成了。

总结

可以看到,如果直接使用DatagramPacketEncoder和DatagramPacketDecoder加上ProtoBufEncoder和ProtoBufDecoder,那么实现的是DatagramPacket和ByteBuf直接的互相转换。

当然这里的ProtoBufEncoder和ProtoBufDecoder可以按照用户的需要被替换成为不同的编码解码器。

可以自由组合编码解码方式,就是netty编码器的最大魅力。

本文已收录于 http://www.flydean.com/17-1-netty-protobuf-udp/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

相关文章
|
6月前
|
网络协议 开发者
探讨UDP协议中connect函数的作用及影响
总结来看,虽然UDP是无连接的,`connect()` 函数的使用在UDP编程中是一种可选的技术,它可以带来编程上的便利和某些性能上的改进,同时它改变的是程序逻辑上的行为,而非UDP协议本身的无连接特性。在实际应用中,根据通信模式和需求的不同,开发者可以根据情况选择是否调用 `connect()` 函数。
278 8
|
存储 网络协议 算法
UDP 协议和 TCP 协议
本文介绍了UDP和TCP协议的基本结构与特性。UDP协议具有简单的报文结构,包括报头和载荷,报头由源端口、目的端口、报文长度和校验和组成。UDP使用CRC校验和来检测传输错误。相比之下,TCP协议提供更可靠的传输服务,其结构复杂,包含序列号、确认序号和标志位等字段。TCP通过确认应答和超时重传来保证数据传输的可靠性,并采用三次握手建立连接,四次挥手断开连接,确保通信的稳定性和完整性。
512 1
UDP 协议和 TCP 协议
|
8月前
|
缓存 编解码 网络协议
Netty基础—8.Netty实现私有协议栈
本文系统性地阐述了私有协议栈的实现框架,首先介绍了私有协议的基本概念和通信模型,然后详细说明了协议栈的消息定义、链路建立与关闭机制,以及心跳检测、重连和重复登录保护等稳定性设计,接着重点描述了核心组件包括ChannelHandler体系、客户端与服务端架构以及会话ID处理器等关键模块,最后涵盖了数据包结构与编解码实现方案,整体呈现了从协议规范到具体功能实现的完整技术架构。
|
8月前
|
监控 网络协议 视频直播
UDP协议(特点与应用场景)
UDP(用户数据报协议)是传输层的一种无连接协议,具有简单高效、低延迟的特点。其主要特点包括:无连接(无需握手)、不可靠传输(不保证数据完整性)、面向数据报(独立传输)。尽管UDP不如TCP可靠,但在实时通信(如语音通话、视频会议)、在线游戏、多媒体流媒体(如直播、点播)及网络监控等领域广泛应用,满足了对速度和实时性要求较高的需求。
1327 19
|
9月前
|
网络协议
为何UDP协议不可靠?DNS为何选择UDP?
总的来说,UDP和TCP各有优势,选择哪种协议取决于应用的具体需求。UDP可能不如TCP可靠,但其简单、快速的特性使其在某些场景下成为更好的选择。而DNS就是这样的一个例子,它利用了UDP的优势,以实现快速、高效的名字解析服务。
493 14
|
9月前
|
网络协议 Java 开发工具
全平台开源即时通讯IM框架MobileIMSDK:7端+TCP/UDP/WebSocket协议,鸿蒙NEXT端已发布,5.7K Stars
全平台开源即时通讯IM框架MobileIMSDK:7端+TCP/UDP/WebSocket协议,鸿蒙NEXT端已发布,5.7K Stars
557 1
|
网络协议
UDP 协议
UDP 协议
493 156
|
12月前
|
缓存 网络协议
Jmeter如何对UDP协议进行测试?
`jmeter-plugins`是JMeter的插件管理器,用于管理和组织所有插件。访问[官网](https://jmeter-plugins.org/install/Install/)下载并放置于`lib/ext`目录下,重启JMeter后可在“选项”中看到插件管理器。
460 1
Jmeter如何对UDP协议进行测试?
|
XML JSON 算法
【JavaEE】——自定义协议方案、UDP协议
自定义协议,序列化,xml方案,json方案,protobuffer方案,UDP协议,校验和,比特翻转,CRC算法,md5算法
|
存储 网络协议 安全
用于 syslog 收集的协议:TCP、UDP、RELP
系统日志是从Linux/Unix设备及网络设备生成的日志,可通过syslog服务器集中管理。日志传输支持UDP、TCP和RELP协议。UDP无连接且不可靠,不推荐使用;TCP可靠,常用于rsyslog和syslog-ng;RELP提供可靠传输和反向确认。集中管理日志有助于故障排除和安全审计,EventLog Analyzer等工具可自动收集、解析和分析日志。
859 2