面试必问系列:手动实现一个 HashMap|Java 刷题打卡

简介: 面试必问系列:手动实现一个 HashMap|Java 刷题打卡

网络异常,图片无法展示
|


题目描述



这是 LeetCode 上的706. 设计哈希映射


不使用任何内建的哈希表库设计一个哈希映射(HashMap)。


实现 MyHashMap 类:


  • MyHashMap() 用空映射初始化对象
  • void put(int key, int value) 向 HashMap 插入一个键值对 (key, value) 。如果 key 已经存在于映射中,则更新其对应的值 value 。
  • int get(int key) 返回特定的 key 所映射的 value ;如果映射中不包含 key 的映射,返回 -1 。
  • void remove(key) 如果映射中存在 key 的映射,则移除 key 和它所对应的 value 。

 

示例:


输入:
["MyHashMap", "put", "put", "get", "get", "put", "get", "remove", "get"]
[[], [1, 1], [2, 2], [1], [3], [2, 1], [2], [2], [2]]
输出:
[null, null, null, 1, -1, null, 1, null, -1]
解释:
MyHashMap myHashMap = new MyHashMap();
myHashMap.put(1, 1); // myHashMap 现在为 [[1,1]]
myHashMap.put(2, 2); // myHashMap 现在为 [[1,1], [2,2]]
myHashMap.get(1);    // 返回 1 ,myHashMap 现在为 [[1,1], [2,2]]
myHashMap.get(3);    // 返回 -1(未找到),myHashMap 现在为 [[1,1], [2,2]]
myHashMap.put(2, 1); // myHashMap 现在为 [[1,1], [2,1]](更新已有的值)
myHashMap.get(2);    // 返回 1 ,myHashMap 现在为 [[1,1], [2,1]]
myHashMap.remove(2); // 删除键为 2 的数据,myHashMap 现在为 [[1,1]]
myHashMap.get(2);    // 返回 -1(未找到),myHashMap 现在为 [[1,1]]
复制代码


提示:


  • 0 <= key, value <= 10^6106
  • 最多调用 10^4104 次 put、get 和 remove 方法

 

进阶:你能否不使用内置的 HashMap 库解决此问题?


简单数组解法



与昨天的 705. 设计哈希集合 不同。


我们不仅仅需要记录一个元素存在与否,还需要记录该元素对应的值是什么。


由于题目限定了数据范围 0 <= key, value <= 10^60<=key,value<=106,和 kv 的数据类型。


我们可以使用 int 类型的数组实现哈希表功能。


class MyHashMap {
    int INF = Integer.MAX_VALUE;
    int N = 1000009;
    int[] map = new int[N];
    public MyHashMap() {
        Arrays.fill(map, INF);
    }
    public void put(int key, int value) {
        map[key] = value;
    }
    public int get(int key) {
        return map[key] == INF ? -1 : map[key];
    }
    public void remove(int key) {
        map[key] = INF;
    }
}
复制代码


  • 时间复杂度:O(1)O(1)
  • 空间复杂度:O(1)O(1)


链表解法



705. 设计哈希集合 同理,我们可以利用「链表」来构建 Map,这也是工程上最简单的一种实现方式。


class MyHashMap {
    static class Node {
        int key, value;
        Node next;
        Node(int _key, int _value) {
            key = _key;
            value = _value;
        }
    }
    // 由于使用的是「链表」,这个值可以取得很小
    Node[] nodes = new Node[10009];
    public void put(int key, int value) {
        // 根据 key 获取哈希桶的位置
        int idx = getIndex(key);
        // 判断链表中是否已经存在
        Node loc = nodes[idx], tmp = loc;
        if (loc != null) {
            Node prev = null;
            while (tmp != null) {
                if (tmp.key == key) { 
                    tmp.value = value;
                    return;
                }
                prev = tmp;
                tmp = tmp.next;
            }
            tmp = prev;
        }
        Node node = new Node(key, value);
        // 头插法
        // node.next = loc;
        // nodes[idx] = node;
        // 尾插法 
        if (tmp != null) {
            tmp.next = node;
        } else {
            nodes[idx] = node;
        }
    }
    public void remove(int key) {
        int idx = getIndex(key);
        Node loc = nodes[idx];
        if (loc != null) {
            Node prev = null;
            while (loc != null) {
                if (loc.key == key) {
                    if (prev != null) {
                        prev.next = loc.next;
                    } else {
                        nodes[idx] = loc.next;
                    }
                    return;
                }
                prev = loc;
                loc = loc.next;
            }
        }
    }
    public int get(int key) {
        int idx = getIndex(key);
        Node loc = nodes[idx];
        if (loc != null) {
            while (loc != null) {
                if (loc.key == key) {
                    return loc.value;
                }
                loc = loc.next;
            }
        }
        return -1;
    }
    int getIndex(int key) {
        // 因为 nodes 的长度只有 10009,对应的十进制的 10011100011001(总长度为 32 位,其余高位都是 0)
        // 为了让 key 对应的 hash 高位也参与运算,这里对 hashCode 进行右移异或
        // 使得 hashCode 的高位随机性和低位随机性都能体现在低 16 位中
        int hash = Integer.hashCode(key);
        hash ^= (hash >>> 16);
        return hash % nodes.length;
    }
}
复制代码


  • 时间复杂度:由于没有扩容的逻辑,最坏情况下复杂度为 O(n)O(n),一般情况下复杂度为 O(1)O(1)
  • 空间复杂度:O(1)O(1)


开放寻址解法



除了使用「链表」来解决哈希冲突以外,还能使用「开放寻址法」来解决。


class MyHashMap {
    static class Node {
        int key, value;
        Node next;
        boolean isDeleted;
        Node(int _key, int _value) {
            key = _key;
            value = _value;
        }
    }
    // 冲突时的偏移量
    int OFFSET = 1;
    Node[] nodes = new Node[10009];
    public void put(int key, int value) {
        int idx = getIndex(key);
        Node node = nodes[idx];
        if (node != null) {
            node.value = value;
            node.isDeleted = false;
        } else {
            node = new Node(key, value);
            nodes[idx] = node;
        }
    }
    public void remove(int key) {
        Node node = nodes[getIndex(key)];
        if (node != null) node.isDeleted = true;
    }
    public int get(int key) {
        Node node = nodes[getIndex(key)];
        if (node == null) return -1;
        return node.isDeleted ? -1 : node.value;
    }
    // 当 map 中没有 key 的时候,getIndex 总是返回一个空位置
    // 当 map 中包含 key 的时候,getIndex 总是返回 key 所在的位置
    int getIndex(int key) {
        int hash = Integer.hashCode(key);
        hash ^= (hash >>> 16);
        int n = nodes.length;
        int idx = hash % n;
        while (nodes[idx] != null && nodes[idx].key != key) {
            hash += OFFSET;
            idx = hash % n;
        }
        return idx;
    }
}
复制代码


  • 时间复杂度:一般情况下复杂度为 O(1)O(1),极端情况下为 O(n)O(n)
  • 空间复杂度:O(1)O(1)


最后



这是我们「刷穿 LeetCode」系列文章的第 No.706 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先将所有不带锁的题目刷完。


在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。


为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour…


在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

相关文章
|
20天前
|
缓存 Java 关系型数据库
【Java面试题汇总】ElasticSearch篇(2023版)
倒排索引、MySQL和ES一致性、ES近实时、ES集群的节点、分片、搭建、脑裂、调优。
【Java面试题汇总】ElasticSearch篇(2023版)
|
11天前
|
设计模式 Java
结合HashMap与Java 8的Function和Optional消除ifelse判断
`shigen`是一位致力于记录成长、分享认知和留住感动的博客作者。本文通过具体代码示例探讨了如何优化业务代码中的if-else结构。首先展示了一个典型的if-else处理方法,并指出其弊端;然后引入了策略模式和工厂方法等优化方案,最终利用Java 8的Function和Optional特性简化代码。此外,还提到了其他几种消除if-else的方法,如switch-case、枚举行、SpringBoot的IOC等。一起跟随shigen的脚步,让每一天都有所不同!
27 10
结合HashMap与Java 8的Function和Optional消除ifelse判断
|
19天前
|
设计模式 Java 关系型数据库
【Java笔记+踩坑汇总】Java基础+JavaWeb+SSM+SpringBoot+SpringCloud+瑞吉外卖/谷粒商城/学成在线+设计模式+面试题汇总+性能调优/架构设计+源码解析
本文是“Java学习路线”专栏的导航文章,目标是为Java初学者和初中高级工程师提供一套完整的Java学习路线。
174 37
|
20天前
|
设计模式 安全 算法
【Java面试题汇总】设计模式篇(2023版)
谈谈你对设计模式的理解、七大原则、单例模式、工厂模式、代理模式、模板模式、观察者模式、JDK中用到的设计模式、Spring中用到的设计模式
【Java面试题汇总】设计模式篇(2023版)
|
20天前
|
存储 关系型数据库 MySQL
【Java面试题汇总】MySQL数据库篇(2023版)
聚簇索引和非聚簇索引、索引的底层数据结构、B树和B+树、MySQL为什么不用红黑树而用B+树、数据库引擎有哪些、InnoDB的MVCC、乐观锁和悲观锁、ACID、事务隔离级别、MySQL主从同步、MySQL调优
【Java面试题汇总】MySQL数据库篇(2023版)
|
20天前
|
存储 缓存 NoSQL
【Java面试题汇总】Redis篇(2023版)
Redis的数据类型、zset底层实现、持久化策略、分布式锁、缓存穿透、击穿、雪崩的区别、双写一致性、主从同步机制、单线程架构、高可用、缓存淘汰策略、Redis事务是否满足ACID、如何排查Redis中的慢查询
【Java面试题汇总】Redis篇(2023版)
|
20天前
|
缓存 前端开发 Java
【Java面试题汇总】Spring,SpringBoot,SpringMVC,Mybatis,JavaWeb篇(2023版)
Soring Boot的起步依赖、启动流程、自动装配、常用的注解、Spring MVC的执行流程、对MVC的理解、RestFull风格、为什么service层要写接口、MyBatis的缓存机制、$和#有什么区别、resultType和resultMap区别、cookie和session的区别是什么?session的工作原理
【Java面试题汇总】Spring,SpringBoot,SpringMVC,Mybatis,JavaWeb篇(2023版)
|
20天前
|
缓存 Java 数据库
【Java面试题汇总】Spring篇(2023版)
IoC、DI、aop、事务、为什么不建议@Transactional、事务传播级别、@Autowired和@Resource注解的区别、BeanFactory和FactoryBean的区别、Bean的作用域,以及默认的作用域、Bean的生命周期、循环依赖、三级缓存、
【Java面试题汇总】Spring篇(2023版)
|
20天前
|
存储 缓存 监控
【Java面试题汇总】JVM篇(2023版)
JVM内存模型、双亲委派模型、类加载机制、内存溢出、垃圾回收机制、内存泄漏、垃圾回收流程、垃圾回收器、G1、CMS、JVM调优
【Java面试题汇总】JVM篇(2023版)
|
8天前
|
消息中间件 NoSQL Java
Java知识要点及面试题
该文档涵盖Java后端开发的关键知识点,包括Java基础、JVM、多线程、MySQL、Redis、Spring框架、Spring Cloud、Kafka及分布式系统设计。针对每个主题,文档列举了重要概念及面试常问问题,帮助读者全面掌握相关技术并准备面试。例如,Java基础部分涉及面向对象编程、数据类型、异常处理等;JVM部分则讲解内存结构、类加载机制及垃圾回收算法。此外,还介绍了多线程的生命周期、同步机制及线程池使用,数据库设计与优化,以及分布式系统中的微服务、RPC调用和负载均衡等。
下一篇
无影云桌面