Google Earth Engine——2017年更新的RESOLVE生态区数据集提供了代表我们生活星球的846个陆地生态区的描述数据集

简介: Google Earth Engine——2017年更新的RESOLVE生态区数据集提供了代表我们生活星球的846个陆地生态区的描述数据集

The RESOLVE Ecoregions dataset, updated in 2017, offers a depiction of the 846 terrestrial ecoregions that represent our living planet. View the stylized map at https://ecoregions2017.appspot.com/ or in Earth Engine.

Ecoregions, in the simplest definition, are ecosystems of regional extent. Specifically, ecoregions represent distinct assemblages of biodiversity―all taxa, not just vegetation―whose boundaries include the space required to sustain ecological processes. Ecoregions provide a useful basemap for conservation planning in particular because they draw on natural, rather than political, boundaries, define distinct biogeographic assemblages and ecological habitats within biomes, and assist in representation of Earth’s biodiversity.

This dataset is based on recent advances in biogeography - the science concerning the distribution of plants and animals. The original ecoregions dataset has been widely used since its introduction in 2001, underpinning the most recent analyses of the effects of global climate change on nature by ecologists to the distribution of the world's beetles to modern conservation planning.

The 846 terrestrial ecoregions are grouped into 14 biomes and 8 realms. Six of these biomes are forest biomes and remaining eight are non-forest biomes. For the forest biomes, the geographic boundaries of the ecoregions (Dinerstein et al., 2017) and protected areas (UNEP-WCMC 2016) were intersected with the Global Forest Change data (Hansen et al. 2013) for the years 2000 to 2015, to calculate percent of habitat in protected areas and percent of remaining habitat outside protected areas. Likewise, the boundaries of the non-forest ecoregions and protected areas (UNEP-WCMC 2016) were intersected with Anthropogenic Biomes data (Anthromes v2) for the year 2000 (Ellis et al., 2010) to identify remaining habitats inside and outside the protected areas. Each ecoregion has a unique ID, area (sq. degrees), and NNH (Nature Needs Half) categories 1-4. NNH categories are based on percent of habitat in protected areas and percent of remaining habitat outside protected areas.

  1. Half Protected: More than 50% of the total ecoregion area is already protected.
  2. Nature Could Reach Half: Less than 50% of the total ecoregion area is protected but the amount of remaining unprotected natural habitat could bring protection to over 50% if new conservation areas are added to the system.
  3. Nature Could Recover: The amount of protected and unprotected natural habitat remaining is less than 50% but more than 20%. Ecoregions in this category would require restoration to reach Half Protected.
  4. Nature Imperiled: The amount of protected and unprotected natural habitat remaining is less than or equal to 20%. Achieving half protected is not possible in the short term and efforts should focus on conserving remaining, native habitat fragments.

The updated Ecoregions 2017 is the most-up-to-date (as of February 2018) dataset on remaining habitat in each terrestrial ecoregion. It was released to chart progress towards achieving the visionary goal of Nature Needs Half, to protect half of all the land on Earth to save a living terrestrial biosphere.

Note - a number of ecoregions are very complex polygons with over a million vertices, such as Rock & Ice. These ecoregions were split when necessary, with attributes like Eco_ID being preserved. If you’d like to see all ecoregions that have been split, please run this script.


2017年更新的RESOLVE生态区数据集提供了代表我们生活星球的846个陆地生态区的描述。在https://ecoregions2017.appspot.com/ 或在Earth Engine中查看风格化的地图。

生态区,最简单的定义,是区域范围的生态系统。具体来说,生态区代表了生物多样性的独特组合--所有分类群,而不仅仅是植被--其边界包括维持生态过程所需的空间。生态区为保护规划提供了一个有用的基图,特别是由于它们利用了自然而非政治的边界,在生物群落内定义了独特的生物地理组合和生态栖息地,并有助于代表地球的生物多样性。

这个数据集是基于生物地理学的最新进展--关于植物和动物分布的科学。原始的生态区数据集自2001年推出以来被广泛使用,为生态学家对全球气候变化对自然的影响的最新分析提供了基础,也为世界甲虫的分布提供了现代保护规划。

846个陆地生态区被分为14个生物群落和8个领域。其中6个生物群落为森林生物群落,其余8个为非森林生物群落。对于森林生物群落,生态区(Dinerstein等,2017)和保护区(UNEP-WCMC 2016)的地理边界与2000至2015年的全球森林变化数据(Hansen等,2013)相交,以计算保护区内生境的百分比和保护区外剩余生境的百分比。同样,非森林生态区和保护区的边界(UNEP-WCMC 2016)与2000年的人为生物群落数据(Anthromes v2)(Ellis等人,2010)相交,以确定保护区内外的剩余生境。每个生态区都有一个独特的ID、面积(平方度)和NNH(自然需求的一半)类别1-4。NNH类别是基于保护区内生境的百分比和保护区外剩余生境的百分比。

半数受保护。超过50%的生态区总面积已被保护。

自然可以达到一半。不到50%的生态区总面积受到保护,但如果新的保护区加入系统,剩余的未受保护的自然栖息地数量可以使保护达到50%以上。

自然可以恢复。剩余的受保护和未受保护的自然生境的数量低于50%,但超过20%。这个类别的生态区需要恢复才能达到一半的保护。

自然受到破坏。剩余的受保护和未受保护的自然生境的数量小于或等于20%。实现一半保护在短期内是不可能的,努力的重点应该是保护剩余的、原生的生境碎片。

更新后的《2017年生态区》是关于每个陆地生态区剩余生境的最新数据集(截至2018年2月)。它的发布是为了描绘实现 "自然需要一半 "这一远景目标的进展,即保护地球上一半的土地以拯救一个活生生的陆地生物圈。

注意 - 一些生态区是非常复杂的多边形,有超过一百万个顶点,如岩石和冰。这些生态区在必要时被分割,像Eco_ID这样的属性被保留下来。如果你想看到所有被分割的生态区,请运行这个脚本。

Dataset Availability

2017-04-05T00:00:00 - 2017-04-05T00:00:00

Dataset Provider

RESOLVE Biodiversity and Wildlife Solutions

Collection Snippet

ee.FeatureCollection("RESOLVE/ECOREGIONS/2017")

波段信息:

Name Type Description
BIOME_NAME String Biome name
BIOME_NUM Double Biome number
COLOR String Color
COLOR_BIO String Biome color
COLOR_NNH String NNH color
ECO_ID Double Ecoregion unique ID
ECO_NAME String Ecoregion name
LICENSE String CC-BY 4.0
NNH Double NNH category (1-4) based on percent of habitat in protected areas and percent of remaining habitat outside protected areas
NNH_NAME String Half Protected, Nature Could Reach Half, Nature Could Recover, or Nature Imperiled
OBJECTID Double Object id
REALM String Realm name
SHAPE_AREA Double Area of ecoregion polygon in square degrees
SHAPE_LENG Double Length of ecoregion polygon in degrees

数据引用:

Bioscience, An Ecoregions-Based Approach to Protecting Half the Terrestrial Realm

代码:

var ecoRegions = ee.FeatureCollection("RESOLVE/ECOREGIONS/2017");
// 补丁更新的颜色
var colorUpdates = [
{ECO_ID: 204, COLOR: '#B3493B'},
{ECO_ID: 245, COLOR: '#267400'},
{ECO_ID: 259, COLOR: '#004600'},
{ECO_ID: 286, COLOR: '#82F178'},
{ECO_ID: 316, COLOR: '#E600AA'},
{ECO_ID: 453, COLOR: '#5AA500'},
{ECO_ID: 317, COLOR: '#FDA87F'},
{ECO_ID: 763, COLOR: '#A93800'},
];
// 循环所有其他特征,并创建一个新的样式属性,以便稍后进行上色。
var ecoRegions = ecoRegions.map(function(f) {
  var color = f.get('COLOR');
  return f.set({style: {color: color, width: 0}});
});
//为我们需要更新颜色的区域制作风格化的特征。
// 然后把它们从主资产中剥离出来,合并到新的特征中。
for (var i=0; i < colorUpdates.length; i++) {
  colorUpdates[i].layer = ecoRegions
      .filterMetadata('ECO_ID','equals',colorUpdates[i].ECO_ID)
      .map(function(f) {
        return f.set({style: {color: colorUpdates[i].COLOR, width: 0}});
      });
  ecoRegions = ecoRegions
      .filterMetadata('ECO_ID','not_equals',colorUpdates[i].ECO_ID)
      .merge(colorUpdates[i].layer);
}
// 使用样式属性为形状着色
var imageRGB = ecoRegions.style({styleProperty: 'style'});
Map.setCenter(16, 49, 4);
Map.addLayer(imageRGB, {}, 'RESOLVE/ECOREGIONS/2017');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
124 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0