Google Earth Engine ——MCD12Q2 V6土地覆盖动态产品(非正式地称为MODIS全球植被表征产品)提供全球范围内的植被表征时间估计

简介: Google Earth Engine ——MCD12Q2 V6土地覆盖动态产品(非正式地称为MODIS全球植被表征产品)提供全球范围内的植被表征时间估计

The MCD12Q2 V6 Land Cover Dynamics product (informally called the MODIS Global Vegetation Phenology product) provides estimates of the timing of vegetation phenology at global scales. Additionally, it provides information related to the range and summation of the enhanced vegetation index (EVI) computed from MODIS surface reflectance data at each pixel. It identifies the onset of greenness, greenup midpoint, maturity, peak greenness, senescence, greendown midpoint, dormancy, EVI2 minimum, EVI2 amplitude, integrated EVI2 over a vegetation cycle, as well as overall and phenology metric-specific quality information. The MCD12Q2 Version 6 data product is derived from time series of the 2-band Enhanced Vegetation Index (EVI2) calculated from MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR). Vegetation phenology metrics are identified for up to two detected growing cycles per year. For pixels with more than two valid vegetation cycles, the data represent the two cycles with the largest NBAR-EVI2 amplitudes.


MCD12Q2 V6土地覆盖动态产品(非正式地称为MODIS全球植被表征产品)提供全球范围内的植被表征时间估计。此外,它还提供了与每个像素的MODIS表面反射率数据计算的增强植被指数(EVI)的范围和总和有关的信息。它确定了绿化的开始、绿化的中点、成熟、绿化的峰值、衰老、绿化的中点、休眠、EVI2的最小值、EVI2的振幅、一个植被周期的综合EVI2,以及整体和物候学指标的具体质量信息。MCD12Q2第6版数据产品来自于从MODIS天底双向反射分布函数(BRDF)-调整反射率(NBAR)计算的双波段增强植被指数(EVI2)的时间序列。植被物候学指标是针对每年最多两个检测到的生长周期进行识别。对于具有两个以上有效植被周期的像素,数据代表具有最大NBAR-EVI2振幅的两个周期。

Dataset Availability

2001-01-01T00:00:00 - 2019-01-01T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MCD12Q2")

Resolution

500 meters

Bands Table

Name Description Min Max Scale
NumCycles Total number of valid vegetation cycles with peak in product year 7 0 0
Greenup_1 Date when EVI2 first crossed 15% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
Greenup_2 Date when EVI2 first crossed 15% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
MidGreenup_1 Date when EVI2 first crossed 50% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
MidGreenup_2 Date when EVI2 first crossed 50% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
Peak_1 Date when EVI2 reached the segment maximum, cycle 1. Days since Jan 1, 1970. 11138 32766 0
Peak_2 Date when EVI2 reached the segment maximum, cycle 2. Days since Jan 1, 1970. 11138 32766 0
Maturity_1 Date when EVI2 first crossed 90% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
Maturity_2 Date when EVI2 first crossed 90% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
MidGreendown_1 Date when EVI2 last crossed 50% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
MidGreendown_2 Date when EVI2 last crossed 50% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
Senescence_1 Date when EVI2 last crossed 90% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
Senescence_2 Date when EVI2 last crossed 90% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
Dormancy_1 Date when EVI2 last crossed 15% of the segment EVI2 amplitude, cycle 1. Days since Jan 1, 1970. 11138 32766 0
Dormancy_2 Date when EVI2 last crossed 15% of the segment EVI2 amplitude, cycle 2. Days since Jan 1, 1970. 11138 32766 0
EVI_Minimum_1 Segment minimum EVI2 value, cycle 1 0 10000 0.0001
EVI_Minimum_2 Segment minimum EVI2 value, cycle 2 0 10000 0.0001
EVI_Amplitude_1 Segment maximum - minimum EVI2, cycle 1 0 10000 0.0001
EVI_Amplitude_2 Segment maximum - minimum EVI2, cycle 2 0 10000 0.0001
EVI_Area_1 Sum of daily interpolated EVI2 from Greenup to Dormancy, cycle 1 0 3700 0.1
EVI_Area_2 Sum of daily interpolated EVI2 from Greenup to Dormancy, cycle 2 0 3700 0.1
QA_Overall_1 QA code for entire segment, cycle 1 0 3 0
QA_Overall_2 QA code for entire segment, cycle 2 0 3 0
QA_Detailed_1 Bit-packed, SDS-specific QA codes, cycle 1 0
QA_Detailed_1 Bitmask
  • Bits 0-1: Greenup QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 2-3: MidGreenup QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 4-5: Maturity QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 6-7: Peak QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 8-9: Senescence QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 10-11: MidGreendown QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 12-13: Dormancy QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
QA_Detailed_2 Bit-packed, SDS-specific QA codes, cycle 2 0
QA_Detailed_2 Bitmask
  • Bits 0-1: Greenup QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 2-3: MidGreenup QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 4-5: Maturity QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 6-7: Peak QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 8-9: Senescence QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 10-11: MidGreendown QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor
  • Bits 12-13: Dormancy QA
    • 0: Best
    • 1: Good
    • 2: Fair
    • 3: Poor

Class Table: QA_Overall_1

Value Color Color Value Description
0 # Best
1 # Good
2 # Fair
3 # Poor

Class Table: QA_Overall_2

Value Color Color Value Description
0 # Best
1 # Good
2 # Fair
3 # Poor

使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

通过LP DAAC获得的MODIS数据和产品对后续使用、销售或再分配没有限制。

引用


代码:

var dataset = ee.ImageCollection('MODIS/006/MCD12Q2')
                  .filter(ee.Filter.date('2001-01-01', '2002-01-01'));
var vegetationPeak = dataset.select('Peak_1');
var vegetationPeakVis = {
  min: 11400,
  max: 11868,
  palette: ['0f17ff', 'b11406', 'f1ff23'],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(
    vegetationPeak, vegetationPeakVis,
    'Vegetation Peak 2001');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
6月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
725 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
124 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0