高并发系统设计之道(一)- 方法论(下)

简介: 高并发系统设计之道(一)- 方法论(下)

2 架构演进最佳实践

既然有这三种方案,是不是就该在高并发系统设计中一股脑全用上?

of course not!架构设计是演进的,不是一次性的!还需要考虑资金成本,运维成本、开发成本各种。淘宝的成功就是现实的生动案例。

不能为了设计而设计,不要过度设计。单机满足业务需求就不要分布式,架构不能盲目,架构一定是逐步演进的,而且是随着业务的需求逐步进行的。可总结如下:


最简单的系统设计满足业务需求和流量现状,选择最熟悉的技术体系

随着流量的增加和业务的变化修正架构中存在问题的点,如单点问题、横向扩展问题、性能无法满足需求的组件。在这个过程中,选择社区成熟的、团队熟悉的组件帮助我们解决问题,在社区没有合适解决方案的前提下才会自己造轮子

当对架构的小修小补无法满足需求时,考虑重构、重写等大的调整方式以解决现有的问题。

高并发系统的演进应该是循序渐进,以解决系统中存在的问题为目的和驱动力的。


参考


https://zh.wikipedia.org/wiki/%E7%A1%AC%E7%9B%98


目录
相关文章
|
6月前
|
消息中间件 缓存 监控
直呼内行!阿里大佬离职带出内网专属“高并发系统设计”学习笔记
我们知道,高并发代表着大流量,高并发系统设计的魅力就在于我们能够凭借自己的聪明才智设计巧妙的方案,从而抵抗巨大流量的冲击,带给用户更好的使用体验。这些方案好似能操纵流量,让流量更加平稳得被系统中的服务和组件处理。
|
存储 缓存 应用服务中间件
|
消息中间件 缓存 数据库
好家伙!阿里最新版高并发系统设计涵盖了“三高”所有骚操作
为啥都爱面高并发? 首先为啥面试官喜欢问高并发、性能调优相关的问题,我想有两点原因: 第一,本身互联网区别于传统软件行业的特点之一就是海量请求。传统软件公司每秒用户几个、几十个的请求很常见,但是互联网公司哪怕一个二线的 App,后端接口请求一天几个亿也很正常。业务特点导致对候选人在海量请求相关的技术上考察的会比较多。 第二、高并发性能调优等方面的问题相当于高考试卷里的难题部分。CRUD 谁都会,xx 培训机构培训上三个月,出来都能写。但是对于高性能、高并发这没几把刷子真会玩不起来的。通过这个来区分候选人水平的高低(招人肯定选水平高的)。
91 1
|
算法 Java 应用服务中间件
高并发系统设计之限流
当我们谈论Web应用或者服务,一个重要的话题就不能避免:限流。这是一种保护系统和维持服务稳定性的重要手段。
95 0
高并发系统设计之限流
|
消息中间件 缓存 负载均衡
秒杀系统设计:高并发下的架构考虑
随着互联网的快速发展,电商平台上的秒杀活动越来越受欢迎。然而,高并发的情况下,如何保证秒杀系统的稳定性和可扩展性成为一个非常具有挑战性的问题。在本文中,我们将讨论如何设计一个高效、可靠的秒杀系统。
219 1
|
消息中间件 缓存 分布式计算
真牛!阿里最新发布这份《亿级高并发系统设计手册》涵盖所有操作
前言 我们知道,高并发代表着大流量,高并发系统设计的魅力就在于我们能够凭借自己的聪明才智设计巧妙的方案,从而抵抗巨大流量的冲击,带给用户更好的使用体验。这些方案好似能操纵流量,让流量更加平稳得被系统中的服务和组件处理。 那我们改如何应对大流量的三种方式? 第一种方法:Scale-out。 第二种方法:使用缓存提升性能 第三种方法:异步处理 面试京东,阿里这些大厂遇到这些问题改怎么办? 秒杀时如何处理每秒上万次的下单请求? 如何保证消息仅仅被消费一次? 如何降低消息队列系统中消息的延迟?
|
负载均衡 网络协议 Dubbo
高并发系统设计之负载均衡
通过负载均衡,我们能提高系统的可用性,提升响应速度,同时也能防止任何单一的资源过度使用。
317 0
|
消息中间件 SQL 缓存
高并发系统设计之思考
高并发系统设计之思考
144 0
|
消息中间件 缓存 监控
直呼内行!阿里大佬离职带出内网专属“高并发系统设计”学习笔记
我们知道,高并发代表着大流量,高并发系统设计的魅力就在于我们能够凭借自己的聪明才智设计巧妙的方案,从而抵抗巨大流量的冲击,带给用户更好的使用体验。这些方案好似能操纵流量,让流量更加平稳得被系统中的服务和组件处理。
|
消息中间件 缓存 架构师
让Github低头的70W字阿里首推高并发系统设计实录到底有多强?
想必有不少在这个时间段选择跳槽或者入行的朋友都入职了新的公司。对于萌新来说,肯定是增强自己面向业务的编程能力(手动狗头),而对于一些有很多年工作经验的程序员或者达到架构的技术水平的程序员来说,他们一般会直接触到系统设计这块的内容,在大流量时代,如何设计出一个能抗住很大并发量的系统这一重担往往就是他们扛着!
让Github低头的70W字阿里首推高并发系统设计实录到底有多强?

热门文章

最新文章

  • 1
    高并发场景下,到底先更新缓存还是先更新数据库?
    59
  • 2
    Java面试题:解释Java NIO与BIO的区别,以及NIO的优势和应用场景。如何在高并发应用中实现NIO?
    66
  • 3
    Java面试题:设计一个线程安全的单例模式,并解释其内存占用和垃圾回收机制;使用生产者消费者模式实现一个并发安全的队列;设计一个支持高并发的分布式锁
    64
  • 4
    Java面试题:如何实现一个线程安全的单例模式,并确保其在高并发环境下的内存管理效率?如何使用CyclicBarrier来实现一个多阶段的数据处理任务,确保所有阶段的数据一致性?
    56
  • 5
    Java面试题:结合建造者模式与内存优化,设计一个可扩展的高性能对象创建框架?利用多线程工具类与并发框架,实现一个高并发的分布式任务调度系统?设计一个高性能的实时事件通知系统
    51
  • 6
    Java面试题:假设你正在开发一个Java后端服务,该服务需要处理高并发的用户请求,并且对内存使用效率有严格的要求,在多线程环境下,如何确保共享资源的线程安全?
    66
  • 7
    在Java中实现高并发的数据访问控制
    39
  • 8
    使用Java构建一个高并发的网络服务
    26
  • 9
    微服务06----Eureka注册中心,微服务的两大服务,订单服务和用户服务,订单服务需要远程调用我们的用,户服务,消费者,如果环境改变,硬编码问题就会随之产生,为了应对高并发,我们可能会部署成一个集
    36
  • 10
    如何设计一个秒杀系统,(高并发高可用分布式集群)
    122