差异基因分析:fold change(差异倍数), P-value(差异的显著性)

简介: 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

做基因表达分析时必然会要做差异分析(DE)

DE的方法主要有两种:

  • Fold change
  • t-test

fold change的意思是样本质检表达量的差异倍数,log2 fold change的意思是取log2,这样可以可以让差异特别大的和差异比较小的数值缩小之间的差距。

image.png

Q-value,是P-value校正值,P值是统计差异的显著性的。Q值比P值更严格的一种统计。

p-value 就是 t-test 来的

image.png

目录
相关文章
|
6月前
|
vr&ar
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-1
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-1
|
6月前
|
vr&ar Python
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
|
6月前
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2
|
6月前
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-3
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-3
|
6月前
R语言EG(Engle-Granger)两步法协整检验、RESET、格兰杰因果检验、VAR模型分析CPI和PPI时间序列关系
R语言EG(Engle-Granger)两步法协整检验、RESET、格兰杰因果检验、VAR模型分析CPI和PPI时间序列关系
|
6月前
|
算法 数据挖掘
R语言实现:混合正态分布EM最大期望估计法
R语言实现:混合正态分布EM最大期望估计法
|
6月前
|
机器学习/深度学习 算法 数据挖掘
SAS用K-Means 聚类最优k值的选取和分析
SAS用K-Means 聚类最优k值的选取和分析
|
6月前
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
|
编解码 Python
python--海温、OLR数据分布做显著性检验,绘制空间分布并打点
使用python对海洋气象数据做显著性检验,并绘制空间pattern
python--海温、OLR数据分布做显著性检验,绘制空间分布并打点
|
数据挖掘 Serverless
Robust火山图:一种含离群值的代谢组数据差异分析方法
代谢组学中差异代谢物的识别仍然是一个巨大的挑战,并在代谢组学数据分析中发挥着突出的作用。由于分析、实验和生物的模糊性,代谢组学数据集经常包含异常值,但目前可用的差异代谢物识别技术对异常值很敏感。作者这里提出了一种基于权重的具有稳健性火山图方法,助于从含有离群值的代谢组数据中更加准确鉴定差异代谢物。
231 0