内核代码阅读(15) - 中断请求队列的初始化

简介: 中断请求队列的初始化

中断请求队列的初始化

数据结构

irq通道的控制

struct hw_interrupt_type {
        const char * typename;
        unsigned int (*startup)(unsigned int irq);
        void (*shutdown)(unsigned int irq);
        void (*enable)(unsigned int irq);
        void (*disable)(unsigned int irq);
        void (*ack)(unsigned int irq);
        void (*end)(unsigned int irq);
        void (*set_affinity)(unsigned int irq, unsigned long mask);
    };
    typedef struct hw_interrupt_type  hw_irq_controller;
1) startup
   启动通道
2) ack
   响应

irq请求队列头部数据结构

typedef struct {
        unsigned int status;                /* IRQ status */
        hw_irq_controller *handler;
        struct irqaction *action;        /* IRQ action list */
        unsigned int depth;                /* nested irq disables */
        spinlock_t lock;
    } ____cacheline_aligned irq_desc_t;
    extern irq_desc_t irq_desc [NR_IRQS];
1) handler 就是通道级别的操作函数。
2) action 是这个队列的头部,类型是 irqaction。

irqaction结构

struct irqaction {
        void (*handler)(int, void *, struct pt_regs *);
        unsigned long flags;
        unsigned long mask;
        const char *name;
        void *dev_id;
        struct irqaction *next;
    };
1) handler
   就是中断服务程序。
2) dev_id
   是设备号,因为这个通道是共享的,所以要依赖这个dev_id区分到底是谁产生的中断。
3) next 链表。

队列头irq_desc的初始化

在 init_IRQ -> init_ISA_irqs中
void __init init_ISA_irqs (void)
    {
        int i;
        init_8259A(0);
        for (i = 0; i < NR_IRQS; i++) {
                irq_desc[i].status = IRQ_DISABLED;
                irq_desc[i].action = 0;
                irq_desc[i].depth = 1;
                if (i < 16) {
                        irq_desc[i].handler = &i8259A_irq_type;
                } else {
                        irq_desc[i].handler = &no_irq_type;
                }
        }
    }
1) irq_desc[i].handler = &i8259A_irq_type;
   设置队列头 irq_desc中的handler为8259的处理函数。

添加一个 interrupt line 到系统中(外设主动调用把自己的中断服务程序注册到相对的请求队列中)

int request_irq(unsigned int irq, 
                void (*handler)(int, void *, struct pt_regs *),
                unsigned long irqflags, 
                const char * devname,
                void *dev_id)
    {
        int retval;
        struct irqaction * action;
    #if 1
        if (irqflags & SA_SHIRQ) {
                if (!dev_id)
                        printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
        }
    #endif
        if (irq >= NR_IRQS)
                return -EINVAL;
        if (!handler)
                return -EINVAL;
        action = (struct irqaction *)
                        kmalloc(sizeof(struct irqaction), GFP_KERNEL);
        if (!action)
                return -ENOMEM;
        action->handler = handler;
        action->flags = irqflags;
        action->mask = 0;
        action->name = devname;
        action->next = NULL;
        action->dev_id = dev_id;
        retval = setup_irq(irq, action);
        if (retval)
                kfree(action);
        return retval;
    }
1) if (!dev_id)
   如果没有dev_id则报错。
2) kmalloc(sizeof(struct irqaction), GFP_KERNEL);
   从slab分配一个 irqaction
3) action->handler = handler;
   设置handler
4) action->dev_id = dev_id;
   设置dev_id
5) printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
   注意这个printk的技巧:打印出调用者的指令地址。
   &irq取出第一个参数在栈上的地址,
   (&irq)[-1] 在栈上往上找一个,就是函数的返回地址。也就是调用者的地址。

setup_irq 链入请求队列

int setup_irq(unsigned int irq, struct irqaction * new)
    {
        int shared = 0;
        unsigned long flags;
        struct irqaction *old, **p;
        irq_desc_t *desc = irq_desc + irq;
        if (new->flags & SA_SAMPLE_RANDOM) {
                rand_initialize_irq(irq);
        }
        spin_lock_irqsave(&desc->lock,flags);
        p = &desc->action;
        if ((old = *p) != NULL) {
                if (!(old->flags & new->flags & SA_SHIRQ)) {
                        spin_unlock_irqrestore(&desc->lock,flags);
                        return -EBUSY;
                }
                do {
                        p = &old->next;
                        old = *p;
                } while (old);
                shared = 1;
        }
        *p = new;
        if (!shared) {
                desc->depth = 0;
                desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
                desc->handler->startup(irq);
        }
        spin_unlock_irqrestore(&desc->lock,flags);
        register_irq_proc(irq);
        return 0;
    }
1) rand_initialize_irq(irq);
   借助外设中断的时序来增进随机数。
2) do {
            p = &old->next;
            old = *p;
  } while (old);
  找到队列尾端,并插入。
相关文章
|
2月前
|
调度 项目管理
内核初始化的过程
【9月更文挑战第13天】内核启动始于函数 `start_kernel()`,该函数位于 `init/main.c` 文件中,包含各类初始化函数。操作系统首先创建 0 号进程 `init_task`,随后初始化中断处理、内存管理、调度模块及虚拟文件系统 VFS。
|
算法 C语言
如何在C语言中实现队列和堆栈的动态扩容
队列和堆栈是在C语言中常用的数据结构,它们可以帮助我们高效地处理数据。然而,在实际编程中,我们经常会遇到数据量超过容量限制的情况。这时,我们需要实现队列和堆栈的动态扩容,以满足实际需求。
122 1
|
6月前
|
算法 数据安全/隐私保护 C++
【C/C++ 编程题 03】用两个栈实现一个队列的功能
【C/C++ 编程题 03】用两个栈实现一个队列的功能
31 0
|
6月前
|
算法 编译器 C语言
【C/C++ 编程题 02】用两个栈实现一个队列的功能
【C/C++ 编程题 02】用两个栈实现一个队列的功能
50 0
|
6月前
|
存储 调度
FreeRTOS深入教程(队列内部机制和源码分析)
FreeRTOS深入教程(队列内部机制和源码分析)
141 0
【函数栈帧的创建和销毁】 -- 神仙级别底层原理,你学会了吗?(1)
1.函数的调用方式 相信你对调用函数一点都不陌生,但是在调用函数的过程中,却存在着很多你无法见到的东西,这是底层信息,想要理解透彻,就得深入底层去观察。 本文以一个最简单的加法函数为例,深入讲解内存空间中的每一条指令。
【函数栈帧的创建和销毁】 -- 神仙级别底层原理,你学会了吗?(2)
1.函数的调用方式 相信你对调用函数一点都不陌生,但是在调用函数的过程中,却存在着很多你无法见到的东西,这是底层信息,想要理解透彻,就得深入底层去观察。 本文以一个最简单的加法函数为例,深入讲解内存空间中的每一条指令。
一看就懂之与栈结构(FILO)相对的——队列结构(FLFO)
一、什么是队列,什么是FIFO ​ 队列允许在一端进行插入操作,在另一端进行删除操作的线性表,队列是与栈相对的一个数据结构,栈的特点是先进后出,而队列的特点是先进先出,进行插入操作的一端叫队尾,进行删除的一端叫队头。 正如队列的名字一样,我们假设有一个队列(正在排队的一列队伍),一群人,人们依次进入队列进行排队。
|
存储 Java 索引
不可上位!数据结构队列,老实排队,Java实现数组模拟队列及可复用环形队列
不可上位!数据结构队列,老实排队,Java实现数组模拟队列及可复用环形队列
144 0
不可上位!数据结构队列,老实排队,Java实现数组模拟队列及可复用环形队列