ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生

简介: ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生

设计思路


1、定义数据集


contents={"name": ['Bob',        'LiSa',                     'Mary',                       'Alan'],

         "ID":   [1,              2,                            3,                            4],    # 输出 NaN

         "age":  [np.nan,        28,                           38 ,                          '' ],   # 输出

       "born": [pd.NaT,     pd.Timestamp("1990-01-01"),  pd.Timestamp("1980-01-01"),        ''],     # 输出 NaT

         "sex":  ['男',          '女',                        '女',                        '男',],   # 输出 None

         "hobbey":['打篮球',     '打羽毛球',                   '打乒乓球',                    '',],   # 输出

         "money":[200.0,                240.0,                   290.0,                     300.0],  # 输出

         "weight":[140.5,                120.8,                 169.4,                      155.6],  # 输出

         }


2、DFS设计


(1)、指定一个包含数据集中所有实体的字典

(2)、指定实体间如何关联:当两个实体有一对多关系时,我们称之为“one”实体,即“parent entity”。

(3)、运行深度特征合成:DFS的最小输入是一组实体、一组关系和计算特性的“target_entity”。DFS的输出是一个特征矩阵和相应的特征定义列表。

让我们首先为数据中的每个客户创建一个特性矩阵,那么现在有几十个新特性来描述客户的行为。

(4)、改变目标的实体:DFS如此强大的原因之一是它可以为我们的数据中的任何实体创建一个特征矩阵。例如,如果我们想为会话构建特性

(5)、理解特征输出:一般来说,Featuretools通过特性名称引用生成的特性。

为了让特性更容易理解,Featuretools提供了两个额外的工具,Featuretools .graph_feature()和Featuretools .describe_feature(),

来帮助解释什么是特性以及Featuretools生成特性的步骤。

(6)、特征谱系图

特征谱系图可视地遍历功能生成过程。从基本数据开始,它们一步一步地展示应用的原语和生成的中间特征,以创建最终特征。

(7)、特征描述:功能工具还可以自动生成功能的英文句子描述。特性描述有助于解释什么是特性,并且可以通过包含手动定义的自定义来进一步改进。

有关如何自定义自动生成的特性描述的详细信息,请参见生成特性描述。



输出结果


  name  ID  age       born sex hobbey  money  weight

0   Bob   1  NaN        NaT   男    打篮球  200.0   140.5

1  LiSa   2   28 1990-01-01   女   打羽毛球  240.0   120.8

2  Mary   3   38 1980-01-01   女   打乒乓球  290.0   169.4

3  Alan   4             NaT   男         300.0   155.6

-------------------------------------------

nums_df:----------------------------------

  name  ID   age  money  weight

0   Bob   1   NaN  200.0   140.5

1  LiSa   2  28.0  240.0   120.8

2  Mary   3  38.0  290.0   169.4

3  Alan   4   NaN  300.0   155.6

cats_df:----------------------------------

  ID hobbey sex        born

0   4    NaN   男         NaN

1   1    打篮球   男         NaN

2   2   打羽毛球   女  1990-01-01

---------------------------------DFS设计:-----------------------------------

feature_matrix_nums

      ID   age  money  weight cats.hobbey cats.sex  cats.COUNT(nums)  \

name                                                                  

Bob    1   NaN  200.0   140.5         打篮球        男               1.0  

LiSa   2  28.0  240.0   120.8        打羽毛球        女               1.0  

Mary   3  38.0  290.0   169.4         NaN      NaN               NaN  

     cats.MAX(nums.age)  cats.MAX(nums.money)  cats.MAX(nums.weight)  \

name                                                                    

Bob                  NaN                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.MEAN(nums.age)  cats.MEAN(nums.money)  cats.MEAN(nums.weight)  \

name                                                                      

Bob                   NaN                  200.0                   140.5  

LiSa                 28.0                  240.0                   120.8  

Mary                  NaN                    NaN                     NaN  

     cats.MIN(nums.age)  cats.MIN(nums.money)  cats.MIN(nums.weight)  \

name                                                                    

Bob                  NaN                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.SKEW(nums.age)  cats.SKEW(nums.money)  cats.SKEW(nums.weight)  \

name                                                                      

Bob                   NaN                    NaN                     NaN  

LiSa                  NaN                    NaN                     NaN  

Mary                  NaN                    NaN                     NaN  

     cats.STD(nums.age)  cats.STD(nums.money)  cats.STD(nums.weight)  \

name                                                                    

Bob                  NaN                   NaN                    NaN  

LiSa                 NaN                   NaN                    NaN  

Mary                 NaN                   NaN                    NaN  

     cats.SUM(nums.age)  cats.SUM(nums.money)  cats.SUM(nums.weight)  \

name                                                                    

Bob                  0.0                 200.0                  140.5  

LiSa                28.0                 240.0                  120.8  

Mary                 NaN                   NaN                    NaN  

     cats.DAY(born)  cats.MONTH(born)  cats.WEEKDAY(born)  cats.YEAR(born)  

name                                                                        

Bob              NaN               NaN                 NaN              NaN  

LiSa             1.0               1.0                 0.0           1990.0  

Mary             NaN               NaN                 NaN              NaN  

features_defs_nums: 29 [<Feature: ID>, <Feature: age>, <Feature: money>, <Feature: weight>, <Feature: cats.hobbey>, <Feature: cats.sex>, <Feature: cats.COUNT(nums)>, <Feature: cats.MAX(nums.age)>, <Feature: cats.MAX(nums.money)>, <Feature: cats.MAX(nums.weight)>, <Feature: cats.MEAN(nums.age)>, <Feature: cats.MEAN(nums.money)>, <Feature: cats.MEAN(nums.weight)>, <Feature: cats.MIN(nums.age)>, <Feature: cats.MIN(nums.money)>, <Feature: cats.MIN(nums.weight)>, <Feature: cats.SKEW(nums.age)>, <Feature: cats.SKEW(nums.money)>, <Feature: cats.SKEW(nums.weight)>, <Feature: cats.STD(nums.age)>, <Feature: cats.STD(nums.money)>, <Feature: cats.STD(nums.weight)>, <Feature: cats.SUM(nums.age)>, <Feature: cats.SUM(nums.money)>, <Feature: cats.SUM(nums.weight)>, <Feature: cats.DAY(born)>, <Feature: cats.MONTH(born)>, <Feature: cats.WEEKDAY(born)>, <Feature: cats.YEAR(born)>]

feature_matrix_cats_df

   hobbey sex  COUNT(nums)  MAX(nums.age)  MAX(nums.money)  MAX(nums.weight)  \

ID                                                                            

4     NaN   男            1            NaN            300.0             155.6  

1     打篮球   男            1            NaN            200.0             140.5  

2    打羽毛球   女            1           28.0            240.0             120.8  

   MEAN(nums.age)  MEAN(nums.money)  MEAN(nums.weight)  MIN(nums.age)  \

ID                                                                      

4              NaN             300.0              155.6            NaN  

1              NaN             200.0              140.5            NaN  

2             28.0             240.0              120.8           28.0  

   MIN(nums.money)  MIN(nums.weight)  SKEW(nums.age)  SKEW(nums.money)  \

ID                                                                        

4             300.0             155.6             NaN               NaN  

1             200.0             140.5             NaN               NaN  

2             240.0             120.8             NaN               NaN  

   SKEW(nums.weight)  STD(nums.age)  STD(nums.money)  STD(nums.weight)  \

ID                                                                        

4                 NaN            NaN              NaN               NaN  

1                 NaN            NaN              NaN               NaN  

2                 NaN            NaN              NaN               NaN  

   SUM(nums.age)  SUM(nums.money)  SUM(nums.weight)  DAY(born)  MONTH(born)  \

ID                                                                            

4             0.0            300.0             155.6        NaN          NaN  

1             0.0            200.0             140.5        NaN          NaN  

2            28.0            240.0             120.8        1.0          1.0  

   WEEKDAY(born)  YEAR(born)  

ID                            

4             NaN         NaN  

1             NaN         NaN  

2             0.0      1990.0  

features_defs_cats_df: 25 [<Feature: hobbey>, <Feature: sex>, <Feature: COUNT(nums)>, <Feature: MAX(nums.age)>, <Feature: MAX(nums.money)>, <Feature: MAX(nums.weight)>, <Feature: MEAN(nums.age)>, <Feature: MEAN(nums.money)>, <Feature: MEAN(nums.weight)>, <Feature: MIN(nums.age)>, <Feature: MIN(nums.money)>, <Feature: MIN(nums.weight)>, <Feature: SKEW(nums.age)>, <Feature: SKEW(nums.money)>, <Feature: SKEW(nums.weight)>, <Feature: STD(nums.age)>, <Feature: STD(nums.money)>, <Feature: STD(nums.weight)>, <Feature: SUM(nums.age)>, <Feature: SUM(nums.money)>, <Feature: SUM(nums.weight)>, <Feature: DAY(born)>, <Feature: MONTH(born)>, <Feature: WEEKDAY(born)>, <Feature: YEAR(born)>]

<Feature: SUM(nums.age)>

The sum of the "age" of all instances of "nums" for each "ID" in "cats".



feature_matrix_cats_df.csv


features_defs_cats_df: 25

[<Feature: hobbey>, <Feature: sex>, <Feature: COUNT(nums)>, <Feature: MAX(nums.age)>, <Feature: MAX(nums.money)>, <Feature: MAX(nums.weight)>, <Feature: MEAN(nums.age)>, <Feature: MEAN(nums.money)>, <Feature: MEAN(nums.weight)>, <Feature: MIN(nums.age)>, <Feature: MIN(nums.money)>, <Feature: MIN(nums.weight)>, <Feature: SKEW(nums.age)>, <Feature: SKEW(nums.money)>, <Feature: SKEW(nums.weight)>, <Feature: STD(nums.age)>, <Feature: STD(nums.money)>, <Feature: STD(nums.weight)>, <Feature: SUM(nums.age)>, <Feature: SUM(nums.money)>, <Feature: SUM(nums.weight)>, <Feature: DAY(born)>, <Feature: MONTH(born)>, <Feature: WEEKDAY(born)>, <Feature: YEAR(born)>]


ID hobbey sex COUNT(nums) MAX(nums.age) MAX(nums.money) MAX(nums.weight) MEAN(nums.age) MEAN(nums.money) MEAN(nums.weight) MIN(nums.age) MIN(nums.money) MIN(nums.weight) SKEW(nums.age) SKEW(nums.money) SKEW(nums.weight) STD(nums.age) STD(nums.money) STD(nums.weight) SUM(nums.age) SUM(nums.money) SUM(nums.weight) DAY(born) MONTH(born) WEEKDAY(born) YEAR(born)

4   男 1   300 155.6   300 155.6   300 155.6             0 300 155.6        

1 打篮球 男 1   200 140.5   200 140.5   200 140.5             0 200 140.5        

2 打羽毛球 女 1 28 240 120.8 28 240 120.8 28 240 120.8             28 240 120.8 1 1 0 1990


ID hobbey sex COUNT(nums)            

4   男 1            

1 打篮球 男 1            

2 打羽毛球 女 1            

 MAX(nums.age) MAX(nums.money) MAX(nums.weight) MEAN(nums.age) MEAN(nums.money) MEAN(nums.weight) MIN(nums.age) MIN(nums.money) MIN(nums.weight)

   300 155.6   300 155.6   300 155.6

   200 140.5   200 140.5   200 140.5

 28 240 120.8 28 240 120.8 28 240 120.8

 SKEW(nums.age) SKEW(nums.money) SKEW(nums.weight) STD(nums.age) STD(nums.money) STD(nums.weight) SUM(nums.age) SUM(nums.money) SUM(nums.weight)

             0 300 155.6

             0 200 140.5

             28 240 120.8

 DAY(born) MONTH(born) WEEKDAY(born) YEAR(born)          

               

               

 1 1 0 1990          

字段解释:


<Feature: hobbey> : The "hobbey".

<Feature: sex> : The "sex".

<Feature: COUNT(nums)> : The number of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.age)> : The maximum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.money)> : The maximum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MAX(nums.weight)> : The maximum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.age)> : The average of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.money)> : The average of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MEAN(nums.weight)> : The average of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.age)> : The minimum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.money)> : The minimum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: MIN(nums.weight)> : The minimum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.age)> : The skewness of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.money)> : The skewness of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: SKEW(nums.weight)> : The skewness of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.age)> : The standard deviation of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.money)> : The standard deviation of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: STD(nums.weight)> : The standard deviation of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.age)> : The sum of the "age" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.money)> : The sum of the "money" of all instances of "nums" for each "ID" in "cats".

<Feature: SUM(nums.weight)> : The sum of the "weight" of all instances of "nums" for each "ID" in "cats".

<Feature: DAY(born)> : The day of the month of the "born".

<Feature: MONTH(born)> : The month of the "born".

<Feature: WEEKDAY(born)> : The day of the week of the "born".

<Feature: YEAR(born)> : The year of the "born".



feature_matrix_nums.csv


features_defs_nums: 29

[<Feature: ID>, <Feature: age>, <Feature: money>, <Feature: weight>, <Feature: cats.hobbey>, <Feature: cats.sex>, <Feature: cats.COUNT(nums)>, <Feature: cats.MAX(nums.age)>, <Feature: cats.MAX(nums.money)>, <Feature: cats.MAX(nums.weight)>, <Feature: cats.MEAN(nums.age)>, <Feature: cats.MEAN(nums.money)>, <Feature: cats.MEAN(nums.weight)>, <Feature: cats.MIN(nums.age)>, <Feature: cats.MIN(nums.money)>, <Feature: cats.MIN(nums.weight)>, <Feature: cats.SKEW(nums.age)>, <Feature: cats.SKEW(nums.money)>, <Feature: cats.SKEW(nums.weight)>, <Feature: cats.STD(nums.age)>, <Feature: cats.STD(nums.money)>, <Feature: cats.STD(nums.weight)>, <Feature: cats.SUM(nums.age)>, <Feature: cats.SUM(nums.money)>, <Feature: cats.SUM(nums.weight)>, <Feature: cats.DAY(born)>, <Feature: cats.MONTH(born)>, <Feature: cats.WEEKDAY(born)>, <Feature: cats.YEAR(born)>]


name ID age money weight cats.hobbey cats.sex cats.COUNT(nums) cats.MAX(nums.age) cats.MAX(nums.money) cats.MAX(nums.weight) cats.MEAN(nums.age) cats.MEAN(nums.money) cats.MEAN(nums.weight) cats.MIN(nums.age) cats.MIN(nums.money) cats.MIN(nums.weight) cats.SKEW(nums.age) cats.SKEW(nums.money) cats.SKEW(nums.weight) cats.STD(nums.age) cats.STD(nums.money) cats.STD(nums.weight) cats.SUM(nums.age) cats.SUM(nums.money) cats.SUM(nums.weight) cats.DAY(born) cats.MONTH(born) cats.WEEKDAY(born) cats.YEAR(born)

Bob 1   200 140.5 打篮球 男 1   200 140.5   200 140.5   200 140.5             0 200 140.5        

LiSa 2 28 240 120.8 打羽毛球 女 1 28 240 120.8 28 240 120.8 28 240 120.8             28 240 120.8 1 1 0 1990

Mary 3 38 290 169.4                                                  

Alan 4   300 155.6   男 1   300 155.6   300 155.6   300 155.6             0 300 155.6        


name ID age money weight          

Bob 1   200 140.5          

LiSa 2 28 240 120.8          

Mary 3 38 290 169.4          

Alan 4   300 155.6          

 cats.hobbey cats.sex cats.COUNT(nums)            

 打篮球 男 1            

 打羽毛球 女 1            

               

   男 1            

 cats.MAX(nums.age) cats.MAX(nums.money) cats.MAX(nums.weight) cats.MEAN(nums.age) cats.MEAN(nums.money) cats.MEAN(nums.weight) cats.MIN(nums.age) cats.MIN(nums.money) cats.MIN(nums.weight)

   200 140.5   200 140.5   200 140.5

 28 240 120.8 28 240 120.8 28 240 120.8

               

   300 155.6   300 155.6   300 155.6

 cats.SKEW(nums.age) cats.SKEW(nums.money) cats.SKEW(nums.weight) cats.STD(nums.age) cats.STD(nums.money) cats.STD(nums.weight) cats.SUM(nums.age) cats.SUM(nums.money) cats.SUM(nums.weight)

             0 200 140.5

             28 240 120.8

               

             0 300 155.6

 cats.DAY(born) cats.MONTH(born) cats.WEEKDAY(born) cats.YEAR(born)          

               

 1 1 0 1990          

               

               


字段解释:


<Feature: ID> : The "ID".

<Feature: age> : The "age".

<Feature: money> : The "money".

<Feature: weight> : The "weight".

<Feature: cats.sex> : The "sex" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.hobbey> : The "hobbey" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.COUNT(nums)> : The number of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.age)> : The maximum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.money)> : The maximum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MAX(nums.weight)> : The maximum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.age)> : The average of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.money)> : The average of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MEAN(nums.weight)> : The average of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.age)> : The minimum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.money)> : The minimum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MIN(nums.weight)> : The minimum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.age)> : The skewness of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.money)> : The skewness of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SKEW(nums.weight)> : The skewness of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.age)> : The standard deviation of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.money)> : The standard deviation of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.STD(nums.weight)> : The standard deviation of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.age)> : The sum of the "age" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.money)> : The sum of the "money" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.SUM(nums.weight)> : The sum of the "weight" of all instances of "nums" for each "ID" in "cats" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.DAY(born)> : The day of the month of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.MONTH(born)> : The month of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.WEEKDAY(born)> : The day of the week of the "born" for the instance of "cats" associated with this instance of "nums".

<Feature: cats.YEAR(born)> : The year of the "born" for the instance of "cats" associated with this instance of "nums".


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
数据采集 数据可视化 大数据
Python在大数据处理中的应用实践
Python在大数据处理中扮演重要角色,借助`requests`和`BeautifulSoup`抓取数据,`pandas`进行清洗预处理,面对大规模数据时,`Dask`提供分布式处理能力,而`matplotlib`和`seaborn`则助力数据可视化。通过这些工具,数据工程师和科学家能高效地管理、分析和展示海量数据。
683 4
|
11月前
|
容灾 安全 关系型数据库
数据传输服务DTS:敏捷弹性构建企业数据容灾和集成
数据传输服务DTS提供全球覆盖、企业级跨境数据传输和智能化服务,助力企业敏捷构建数据容灾与集成。DTS支持35种数据源,实现全球化数据托管与安全传输,帮助企业快速出海并高效运营。瑶池数据库的全球容灾、多活及集成方案,结合DTS的Serverless和Insight功能,大幅提升数据传输效率与智能管理水平。特邀客户稿定分享了使用DTS加速全球业务布局的成功经验,展示DTS在数据分发、容灾多活等方面的优势。
348 0
|
9月前
|
存储 SQL 监控
【亲测有用】数据中台数据服务管理能力演示
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
11月前
|
存储 缓存 关系型数据库
社交软件红包技术解密(六):微信红包系统的存储层架构演进实践
微信红包本质是小额资金在用户帐户流转,有发、抢、拆三大步骤。在这个过程中对事务有高要求,所以订单最终要基于传统的RDBMS,这方面是它的强项,最终订单的存储使用互联网行业最通用的MySQL数据库。支持事务、成熟稳定,我们的团队在MySQL上有长期技术积累。但是传统数据库的扩展性有局限,需要通过架构解决。
318 18
|
11月前
|
关系型数据库 Linux 定位技术
PostGIS2.4服务器编译安装
通过上述步骤,你可以成功编译和安装PostGIS 2.4,并在PostgreSQL数据库中启用PostGIS扩展。确保在配置过程中仔细检查每一步,以避免出现配置错误。PostGIS的安装使得PostgreSQL能够处理复杂的地理空间数据,极大地扩展了数据库的功能。
376 19
|
SQL 关系型数据库 MySQL
PHP与MySQL的高效协同开发策略####
本文深入探讨了PHP与MySQL在Web开发中的协同工作机制,通过优化配置、最佳实践和高级技巧,展示了如何提升数据库交互性能,确保数据安全,并促进代码可维护性。我们将从环境搭建讲起,逐步深入到查询优化、事务管理、安全防护及性能调优等核心环节,为开发者提供一套实战驱动的解决方案框架。 ####
|
小程序 API 网络安全
小程序中的合法域名的作用及条件有哪些?
小程序中的合法域名的作用及条件有哪些?
|
人工智能 Oracle 关系型数据库
哪些CRM软件领先?揭秘2024年前15大品牌!
这篇文本列举了15个知名的CRM(客户关系管理)软件品牌,包括Zoho CRM、Salesforce、神州云动、Oracle CRM、销售易、纷享CRM、红圈CRM、SAP、用友CRM、微软CRM、勤策CRM、玄武CRM、Xtools超兔、螳螂科技和八百客。这些品牌在国内外市场都有一定的影响力,适用于不同规模和行业的企业。其中,Zoho CRM和Salesforce被特别提及,Zoho以其高性价比和全面的功能受到好评,而Salesforce则因其在SaaS CRM领域的开创性地位而知名。文章还提到了各个品牌的特色和适用场景,例如神州云动专注于销售管理和红圈CRM侧重工程企业服务。
624 3
|
监控 Linux
掌握Linux top命令:优化系统性能的关键
总之,掌握Linux top命令对于优化系统性能至关重要。通过实时监控系统资源、查看进程列表、了解CPU和内存使用情况,你可以有效地调整系统配置,提高系统的响应速度和稳定性。
267 0
|
监控 关系型数据库 MySQL
MySQL性能调优与监控:优化查询与实时监测
本文深入探讨了MySQL数据库的性能调优与监控,通过详细的代码示例,介绍了优化器与执行计划、查询性能调优策略,以及性能监控工具与指标。优化查询性能是数据库管理中的关键环节,通过合理的查询设计、索引的使用和避免不必要的操作,可以显著提升数据库操作效率。性能监控工具如MySQL Performance Schema和MySQL Enterprise Monitor能够实时监测数据库的性能指标,帮助管理员及时发现和解决性能问题。
1627 0
MySQL性能调优与监控:优化查询与实时监测