成功解决xgboost\core.py:614: UserWarning: Use subset (sliced data) of np.ndarray is not recommended beca

简介: 成功解决xgboost\core.py:614: UserWarning: Use subset (sliced data) of np.ndarray is not recommended beca

解决问题


xgboost\core.py:614: UserWarning: Use subset (sliced data) of np.ndarray is not recommended because it will generate extra copies and increase memory consumption

 "because it will generate extra copies and increase memory consumption")




解决思路


错误地址:xgboost\core.py:614

用户警告:

使用np.ndarray的子集(切片数据),不推荐使用np.ndarray,因为它会生成额外的副本并增加内存消耗

“因为它会生成额外的副本,并增加内存消耗”




解决方法


此信息提示为警告,而不是error,即使不处理也不会影响代码编程的运行。如果想要去掉,可以更新库至最新版本!

然后根据要求提示修改使用方法!

在进行sliced data时,' np.ndarray '方法不再推荐使用!



相关文章
|
机器学习/深度学习 传感器 算法
【GRU分类】基于注意力机制门控循环单元attention-GRU实现数据多维输入单输出分类附matlab代码
【GRU分类】基于注意力机制门控循环单元attention-GRU实现数据多维输入单输出分类附matlab代码
|
7月前
|
机器学习/深度学习 算法 数据挖掘
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
252 12
PyTabKit:比sklearn更强大的表格数据机器学习框架
|
数据采集 数据可视化 数据挖掘
Python中的数据分析:从零开始的指南
Python中的数据分析:从零开始的指南
379 2
|
机器学习/深度学习 算法 数据挖掘
【机器学习】在使用K-means聚类算法时,如何选择K的值?
【5月更文挑战第11天】【机器学习】在使用K-means聚类算法时,如何选择K的值?
|
存储 数据可视化 项目管理
Heptabase 替代指南:免费知识管理工具分享
如果你还在找知识库管理软件,试试这5款可以替代heptabase 的免费工具。
685 1
Heptabase 替代指南:免费知识管理工具分享
|
机器学习/深度学习 数据采集 数据挖掘
深度学习之地形分类与变化检测
基于深度学习的地形分类与变化检测是遥感领域的一个关键应用,利用深度学习技术从卫星、无人机等地球观测平台获取的遥感数据中自动分析地表特征,并识别地形的变化。这一技术被广泛应用于城市规划、环境监测、灾害预警、土地利用变化分析等领域。
780 1
|
存储 关系型数据库 数据管理
在 Postgres 中使用 Create Table
【8月更文挑战第11天】
1323 0
在 Postgres 中使用 Create Table
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。
1201 10
|
机器学习/深度学习 自然语言处理 数据可视化
文本挖掘与可视化:生成个性化词云的Python实践【7个案例】
词云(Word Cloud),又称为文字云或标签云,是一种用于文本数据可视化的技术,通过不同大小、颜色和字体展示文本中单词的出现频率或重要性。在词云中,更频繁出现的单词会显示得更大,反之则更小。
|
SQL 分布式计算 NoSQL
使用Spark高效将数据从Hive写入Redis (功能最全)
使用Spark高效将数据从Hive写入Redis (功能最全)
838 1