Schedulerx2.0工作流支持数据传输

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
数据传输服务 DTS,同步至SelectDB 1个月
简介: 1. 前言Schedulerx2.0是阿里中间件自研的基于akka架构的新一代分布式任务调度平台,提供定时、任务编排、分布式跑批等功能,具有高可靠、海量任务、秒级调度等能力。Schedulerx2.0提供可视化的工作流进行任务编排,该文章将详细介绍如何使用schedulerx2.0的工作流进行上下游任务的数据传输。

1. 前言

Schedulerx2.0是阿里中间件自研的基于akka架构的新一代分布式任务调度平台,提供定时、任务编排、分布式跑批等功能,具有高可靠、海量任务、秒级调度等能力。

Schedulerx2.0提供可视化的工作流进行任务编排,该文章将详细介绍如何使用schedulerx2.0的工作流进行上下游任务的数据传输。

2. 接口介绍

2.1 支持的执行方式和任务类型

当前只有java任务支持数据传输,网格计算请使用MapReduce模型进行数据传输。

2.2 返回执行结果

/**
 *
 * @param status
 * @param result, the size should less than 1000 bytes
 * @throws Exception
 */
public ProcessResult(boolean status, String result) throws Exception;

在Processor结尾,通过该结果替代ProcessResult(boolean status),可以返回执行结果。

result的长度不能超过1000个字节(注意,不是String的长度,如果有中文字符,可能会超过1000个字节!),如果超过1000个字节,任务会失败。

2.3 获取上游数据

List<JobInstanceData> upstreamDatas = JobContext.getUpstreamData();

在Processor里,可以通过该接口从JobContext中拿到上游的数据。上游的数据是一个list(可能有多个父节点),JobInstanceData里有两个属性,分别是jobName和data(String类型)。

3. Demo演示

首先我们写三个jobProcessor

public class TestSimpleJobA extends JavaProcessor {
    @Override
    public ProcessResult process(JobContext context) throws Exception {
        System.out.println("TestSimpleJobA " + DateTime.now().toString("yyyy-MM-dd HH:mm:ss"));
        return new ProcessResult(true, String.valueOf(1));
    }
}
public class TestSimpleJobB extends JavaProcessor {
    @Override
    public ProcessResult process(JobContext context) throws Exception {
        System.out.println("TestSimpleJobB " + DateTime.now().toString("yyyy-MM-dd HH:mm:ss"));
        return new ProcessResult(true, String.valueOf(2));
    }
}
public class TestSimpleJobC extends JavaProcessor {

    @Override
    public ProcessResult process(JobContext context) throws Exception {
        List<JobInstanceData> upstreamDatas = context.getUpstreamData();
        int sum = 0;
        for (JobInstanceData jobInstanceData : upstreamDatas) {
            System.out.println("jobName=" + jobInstanceData.getJobName() + ", data=" + jobInstanceData.getData());
            sum += Integer.valueOf(jobInstanceData.getData());
        }
        System.out.println("TestSimpleJobC sum=" + sum);
        return new ProcessResult(true, String.valueOf(sum));
    }

}

通过控制台配置工作流如下图所示
image

触发一次该工作流,然后进入工作流实例图,右键jobA的实例,进入详情,可以看到jobA实例结果=1,如下图
image
同理,可以看到jobB的实例结果=2, jobC的实例结果=3

控制台也能看到jobC的机器打印

jobName=jobB, data=2
jobName=jobA, data=1
TestSimpleJobC sum=3
相关实践学习
自建数据库迁移到云数据库
本场景将引导您将网站的自建数据库平滑迁移至云数据库RDS。通过使用RDS,您可以获得稳定、可靠和安全的企业级数据库服务,可以更加专注于发展核心业务,无需过多担心数据库的管理和维护。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
相关文章
|
分布式计算 并行计算 数据库
Schedulerx2.0分布式计算原理&最佳实践
1. 前言 Schedulerx2.0的客户端提供分布式执行、多种任务类型、统一日志等框架,用户只要依赖schedulerx-worker这个jar包,通过schedulerx2.0提供的编程模型,简单几行代码就能实现一套高可靠可运维的分布式执行引擎。
26706 2
|
消息中间件 资源调度 数据可视化
企业级分布式批处理方案
在企业级大数据量批处理需求场景中,如何通过分布式方式来有效地提升处理效率。本文将就常见批处理框架Spring Batch与SchdulerX进行比较讨论。同时基于阿里巴巴分布式任务调度平台SchedulerX2.0,实现一个分布式并行批处理方案,展示其相关的功能特性。
2737 0
|
Java Spring
动态控制 Spring Boot 中的 @Scheduled 定时任务
Spring Boot 中的 @Scheduled 注解为定时任务提供了一种很简单的实现,只需要在注解中加上一些属性,例如 fixedRate、fixedDelay、cron(最常用)等等,并且在启动类上面加上 @EnableScheduling 注解,就可以启动一个定时任务了。 但是在某些情况下,并没有这么简单,例如项目部署上线之后,我们可能会修改定时任务的执行时间,并且停止、重启定时任务等,因为定时任务是直接写死在程序中的,修改起来不是非常的方便。所以,简单记录一下自己的一些解决方案,仅供参考。
2470 0
|
11月前
|
监控 安全 调度
彻底解决5大开源痛点,阿里云发布任务调度 XXL-JOB 版
阿里云任务调度XXL-JOB版 迎来重磅发布,以任务调度SchedulerX为内核,0代码改造,完全兼容开源XXL-JOB客户端接入,解决开源XXL-JOB痛点问题。
1511 118
|
11月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
4099 66
|
分布式计算 监控 大数据
任务调度scheduleX
【8月更文挑战第22天】
2232 0
|
消息中间件 存储 资源调度
订单超时处理的几种方案及分析
描述业务常见的订单超时处理的几种方案及分析
32998 19
订单超时处理的几种方案及分析
|
存储 资源调度 监控
Java定时任务技术趋势
定时任务是每个业务常见的需求,本文详细介绍Java定时任务的技术趋势
1846 1
|
分布式计算 前端开发 数据可视化
第三代分布式任务调度框架PowerJob
PowerJob是新一代分布式任务调度与计算框架,支持CRON、API、固定频率、固定延迟等调度策略,提供工作流来编排任务解决依赖关系,能让您轻松完成作业的调度与繁杂任务的分布式计算。
4429 0
|
运维 资源调度 监控
说说Spring定时任务如何大规模企业级运用
聊下java体系中Spring提供的定时任务方案的原理及其企业化运用过程中的一些问题,如何让现有的spring定时任务满足企业级运行需要。
1099 0

热门文章

最新文章