GC优化利器 - HBase2.0全链路offheap

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 Tair(兼容Redis),内存型 2GB
简介: gc问题会带来访问毛刺,回顾一下读写链路,然后看看全链路offheap怎么减少gc停顿、减低p999延迟的。

_2019_04_16_7_12_12

讲师

林明--阿里巴巴-云hbase内核开发 高级工程师

内容概要

gc问题会带来访问毛刺,回顾一下读写链路,然后看看全链路offheap怎么减少gc停顿、减低p999延迟的。

视频回看地址:

https://yq.aliyun.com/live/991

PPT下载地址:

https://yq.aliyun.com/download/3509


技术社群


【HBase生态+Spark社区大群】
群福利:群内每周进行群直播技术分享及问答
加入方式1:点击link申请加入
加入方式2:钉钉扫码加入
_2018_12_18_10_00_56

相关文章
|
6月前
|
机器学习/深度学习 分布式计算 Hadoop
一种HBase表数据迁移方法的优化
一种HBase表数据迁移方法的优化
91 0
|
存储 缓存 算法
HBase优化之路-合理的使用编码压缩
为什么要讨论HBase编码压缩 编码+压缩能够成倍的减少数据的磁盘占用空间,节省可观的存储费用 编码+压缩通常情况下可以提高系统吞吐率,让系统可以做更多的功 默认建表不启用编码或者压缩,对初学者不友好 了解HBase编码 举个栗子,我们有一张物流表叫"express",记录物流订单的流转详情。
4434 0
|
3月前
|
缓存 监控 Java
"Java垃圾回收太耗时?阿里HBase GC优化秘籍大公开,让你的应用性能飙升90%!"
【8月更文挑战第17天】阿里巴巴在HBase实践中成功将Java垃圾回收(GC)时间降低90%。通过选用G1垃圾回收器、精细调整JVM参数(如设置堆大小、目标停顿时间等)、优化代码减少内存分配(如使用对象池和缓存),并利用监控工具分析GC行为,有效缓解了高并发大数据场景下的性能瓶颈,极大提升了系统运行效率。
79 4
|
存储 SQL 消息中间件
Kylin 在贝壳的性能挑战和 HBase 优化实践(2)
Kylin 在贝壳的性能挑战和 HBase 优化实践
134 0
Kylin 在贝壳的性能挑战和 HBase 优化实践(2)
|
SQL 分布式计算 监控
Kylin 在贝壳的性能挑战和 HBase 优化实践(1)
Kylin 在贝壳的性能挑战和 HBase 优化实践
127 0
Kylin 在贝壳的性能挑战和 HBase 优化实践(1)
|
Arthas 负载均衡 Java
Hbase1.3 生产优化,源码分析
Hbase1.3 生产优化,源码分析
132 0
|
缓存 安全 Java
HBase 优化_3 | 学习笔记
快速学习 HBase 优化_3
161 0
|
存储 缓存 分布式数据库
HBase 优化_2 | 学习笔记
快速学习 HBase 优化_2
116 0
|
存储 负载均衡 分布式数据库
HBase 优化_1 | 学习笔记
快速学习 HBase 优化_1
128 0
下一篇
无影云桌面