亚马逊加入全球芯片大战,推出首款云端AI芯片

简介: 对于亚马逊来说,即使现在坐稳了头把交椅,也要不断地在技术上做出更多的革新。

对于亚马逊来说,即使现在坐稳了头把交椅,也要不断地在技术上做出更多的革新。

终于,亚马逊也加入了全球AI芯片大战。今天凌晨,亚马逊在拉斯维加斯召开的AWS re:Invent大会上,亚马逊AWS CEO Andy Jassy发布了一系列新产品,其中包括针对机器学习定制设计的云端AI芯片Inferentia。

根据官方介绍,AWS Inferentia提供高达数百TOPS的推理吞吐量,以允许复杂模型进行快速预测。另外,可以将多个AWS Inferentia芯片一起使用,以提高到数千TOPS的吞吐量。

TB1vKv4srPpK1RjSZFFXXa5PpXa.png

AWS Inferentia将支持主流深度学习框架,包括谷歌开发的TensorFlow、Facebook开发的PyTorch和MXNet等。当然,作为亚马逊自家的产品, Inferentia也支持EC2、SageMaker和最新的弹性推理引擎Elastic Inference。

Andy Jassy表示,“我们认为可以通过Elastic Inference节省75%的运营成本,所以这是一个改变游戏的重大规则。”

Inferentia芯片将于2019年底上市。与其他AWS服务一样,客户可以根据需求付费购买。

在云计算这条赛道上,亚马逊AWS的市场份额一直遥遥领先,不过根据市场和技术的变化,他们也紧跟谷歌的步伐,推出针对云端机器学习优化的芯片,在2016年,谷歌率先推出其首款TPU,目前已经迭代到了第三代。同样在国内,阿里、华为也有自己的云端AI芯片。

此次,亚马逊的加入势必会让云服务市场竞争更为激烈。

在前几天,亚马逊还发布了基于ARM的芯片Graviton以及基于该芯片提供的EC2 A1虚拟服务器,这款芯片由亚马逊于2015年收购的芯片开发商Annapurna Labs设计。亚马逊表示,Graviton在运行特定工作负载时成本比英特尔或AMD的芯片最多要低45%,要知道,服务器市场芯片基本上是被这两家所统治。

TB18zD2sCzqK1RjSZPcXXbTepXa.png

Graviton的推出不仅仅是亚马逊AWS对自己业务产品的一次强化,也是Arm在移动设备之外的新尝试。

除此之外,亚马逊AWS还推出了支持超级账本平台和以太坊架构的区块链服务Amazon Managed Blockchain。

从人工智能到区块链,亚马逊正在一步步升级其云服务业务及配套产品,从而更好地适应当前新技术对云计算的需求。毕竟在这块人人都觊觎的大市场里,稍有落后就是客户的流失,对于亚马逊来说,即使现在坐稳了头把交椅,但后来者来势汹汹,必须要不断地在技术上做出更多的革新。

相关文章
|
25天前
|
人工智能 自然语言处理 小程序
云端微光,AI启航:低代码开发的智造未来
在技术革新飞速发展的浪潮中,低代码开发与AI技术的结合正在重塑编程的边界。通过亲身体验腾讯云开发 Copilot,本篇文章从初学者视角出发,深度探索了从需求输入到功能实现的整个流程。Copilot 的自然语言解析能力和模块化设计,不仅缩短了开发周期,更让非技术背景的用户也能轻松迈入技术世界。AI 的加持使开发效率倍增,需求转化更加精准;然而,复杂场景中的生成代码质量和高级功能支持也存在优化空间。文章总结了AI辅助开发的技术优势、应用场景与未来发展方向,并探讨了开发者角色在智能化时代的转型,致力于为读者呈现一
44 1
云端微光,AI启航:低代码开发的智造未来
|
16天前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
56 12
|
13天前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
19天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】芯片的编程体系
本文探讨了SIMD与SIMT的区别及联系,分析了SIMT与CUDA编程的关系,深入讨论了GPU在SIMT编程的本质及其与DSA架构的关系。文章还概述了AI芯片的并行分类与并行处理硬件架构,强调了理解AI芯片编程体系的重要性,旨在帮助开发者更高效地利用AI芯片算力,促进生态繁荣。
44 0
|
19天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
36 0
|
2月前
|
人工智能 机器人 云计算
【通义】AI视界|OpenAI据称已计划联手博通和台积电共同打造自研芯片
本文由【通义】自动生成,涵盖苹果iOS 18.2将集成ChatGPT、OpenAI联手博通和台积电自研芯片、微软指责谷歌发起影子运动、英伟达高管预测AI将呈现人类形态、OpenAI董事会主席的初创公司估值达45亿美元等热点资讯。更多精彩内容,请访问通通知道。
|
2月前
|
数据采集 人工智能 搜索推荐
【通义】AI视界|迎接Apple Intelligence,Mac家族进入M4芯片时代
本文概览了近期科技领域的五大热点:苹果宣布Apple Intelligence将于2025年4月支持中文;新款Mac将搭载M4芯片;ChatGPT周活跃用户达2.5亿,主要收入来自订阅;Meta开发AI搜索引擎减少对外部依赖;周鸿祎支持AI发展但反对构建超级智能。更多详情,访问通义平台。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
2天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。
|
7天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建

热门文章

最新文章