凸函数相关

简介: 凸函数是凸集中元素的数学特征, 体现了凸集中元素所呈现的规律性.

1.3 凸函数

凸函数是凸集中元素的数学特征, 体现了凸集中元素所呈现的规律性. 它被定义为某个向量空间的凸子集 $C$ 上的实值函数 $f$. 若在其定义域 $C$ 上的任意两点 $x_1,x_2$, 及 $α in [0,1]$, 均有

$$ f(αx_1 +(1-α)x_2) \leq αf(x_1) + (1-α)f(x_2) $$

1.3.1 凸函数的判定

  1. 设 $f_1,f_2,\cdots, f_k$ 是凸集 $S$ 上的凸函数,令 $phi(x)= displaystylesum_{i=1}^k λ_if_i(x)$,其中 $∀ λ_i geq 0 $,则 $\psi(x)=\displaystyle\max_{1\leq i \leq k} f_i(x)$ 与 $\phi(x)$ 都是 $S$ 上的凸函数。
  2. 设在凸集 $D \subset \mathbb{R}^n $ 上 $f(x)$ 可微, 则 $f(x)$ 在 $D$ 上的为凸函数的充要条件是对于任意的 $x,y\in D $, 都有

$$ f(y) \geq f(x) + \nabla f(x)^T(y-x) $$

  1. 设在开凸集 $D \subset \mathbb{R}^n $ 上 $f(x)$ 二阶可微,则 $f(x)$ 在 $D$ 上的为凸函数的充要条件是对于任意的 $x\in D$,$f(x)$ 的 Hesse 矩阵半正定。

$$ G(x) = ∇^2 f(x) = \begin{bmatrix} \frac{∂^2f}{∂x_1^2} & \cdots & \frac{∂^2f}{∂x_1x_n}\\ \vdots & \ddots & \vdots\\ \frac{∂^2f}{∂x_nx_1} & \cdots & \frac{∂^2f}{∂x_n^2} \end{bmatrix} $$

1.3.2 常用的凸函数

  • 线性函数和仿射函数都是凸函数
  • 最大值函数
  • 幂函数: 当 $\alpha\in [0,1]$ 时, $x^{\alpha}$ 是一个凸函数; 绝对值幂函数也是凸函数。
  • 对数函数 $\log(x)$ 在 $\mathbb{R}_{++}$ 上是凸函数
  • $f(x) = \log(\displaystyle\sum_{i=1}^n \exp(x_i))$ 是 $\mathbb{R}^n$ 上的凸函数
  • 几何平均: $ f(x) = (displaystyle∏_{i=1}^n x_i)^{frac{1}{n}} $ 是定义在 $\mathbb{R}_{++}^n$ 上的凸函数
  • 范数

1.3.3 凸函数的性质

  • 任一局部极小 (大) 点也是全局极小 (大) 点,且全局极小 (大) 点的集合为凸集。
  • 任一局部最优解都是它的整体最优解。

在最优化理论中,局部最优解被称为满意解,全局最优解被称为最优解。大多数传统的最优化理论和算法都只能保证找到满意解,因而人们尽可能的使用凸函数作为优化问题的目标函数。对于那些无法转换为凸函数的优化问题,只有通过穷举法来计算函数的所有值 (如果可能) 来找到全局最优解。当然针对一些特定的问题可以通过,诸如模拟退火法、隐马尔科夫链算法等随机优化方法来寻找最优解。但这不是我们讨论的要点,我们主要列举一些我认为比较重要的凸函数的相关知识点。

目录
相关文章
|
9月前
|
机器学习/深度学习 算法 Serverless
代价函数详解
代价函数详解
02 微积分 - 导数
02 微积分 - 导数
40 0
|
机器学习/深度学习 算法 Python
数学和微分角度理解梯度下降算法
数学和微分角度理解梯度下降算法
127 0
微积分:微分
1.代数推导 假设我们有一个正方形初始边长为X,这时面积S1=x² 然后正方形的边长增加△x,此时面积S2=(x+△x)² 变化的面积大小是△s=(x+△x)²- x²=2x△x+(△x)² 观察可以发现当△x越小(△x)²会比2x△x率先趋近于0,也就是换句话说,当△x很小时我们可以近似的认为 △s=2x△x 仔细观察上面的式子,这个2X其实就是x的平方的导数,这时候我们是不是就理解了为什么说导数可以描述变化趋势的快慢。
165 0
曲线拟合-最小二乘法
线性最小二乘法及matlab例程
最优化理论(二)拉格朗日乘子法
最优化理论(二)拉格朗日乘子法
236 0
|
人工智能 开发者
求解拉格朗日乘子法 | 学习笔记
快速学习求解拉格朗日乘子法
求解拉格朗日乘子法 | 学习笔记
|
算法 数据可视化 数据挖掘
梯度下降【无约束最优化问题】(二)
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有NumPy,Pandas,Matplotlib的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解),本文是梯度下降的第一部分,后续还会有:三种梯度下降方法与代码实现,梯度下降优化,梯度下降优化进阶 (暂未更新)
162 0
梯度下降【无约束最优化问题】(二)
|
机器学习/深度学习 算法 数据挖掘
梯度下降【无约束最优化问题】(一)
本文属于 线性回归算法【AIoT阶段三】(尚未更新),这里截取自其中一段内容,方便读者理解和根据需求快速阅读。本文通过公式推导+代码两个方面同时进行,因为涉及到代码的编译运行,如果你没有NumPy,Pandas,Matplotlib的基础,建议先修文章:数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解),本文是梯度下降的第一部分,后续还会有:三种梯度下降方法与代码实现,梯度下降优化,梯度下降优化进阶 (暂未更新)
233 0
梯度下降【无约束最优化问题】(一)