论文Express | 英伟达最新:多模态无监督图像迁移网络框架

简介:

不久前,文摘菌给大家分享了一篇Ian Goodfellow的论文,教大家如何把一张哈士奇的图像硬生生的AI成一只猫咪,论文的结果确实会让人傻傻分不清楚,点击这里查看相关内容。

然而,今天的这篇论文效果更棒!先上两张图片:


当你养了一只哈士奇觉得不过瘾的时候,你可以AI出四只小猫咪,让它们一起陪你玩耍。


用一张猫咪的图像生成老虎、狮子或者豹子等其他猫科动物的图像!

用一张猫咪的图像生成小柯基、萨摩耶或者二哈的图像!

当然你也可以用豹子的图像生成萨摩耶、二哈或者小柯基的图像……

这种连PS大师都没见过的方法就是由康奈尔大学的Xun Huang(他同时在英伟达实习)等人提出的多维无监督图像迁移网络框架实现的。

在大数据文摘后台回复“迁移”下载论文~

以下是论文部分内容,文末有代码链接哦~

无监督图像迁移网络是计算机视觉领域的一个技术难题,即给定一张源域图像,如何在没有其他图像样本的情况下,学习相应目标域图像的条件分布。当处理多维条件分布时,现有的方法是在过度简化的假设条件下,通过绘制源域图像和确定的、一对一的目标图像来进行建模。

然而,上述方法无法用来生成给定源域图像的多种多样的目标图像。因此,本文提出了一种多维无监督图像迁移网络框架。

本文中假定代表图像可以被分解成域不变的内容代码,并能捕获特定于域的属性。为了能将图像迁移到另一个域中,本文通过对任意目标域图片的风格空间进行采样,并利用获得的风格代码生成内容代码。

论文方法


▲论文方法

上图说明了论文提出方法,首先将每个域Xi中的图像进行编码后放入一个共享的内容空间C和特定于域的风格空间Si,每个编码器还有逆向解码功能。

其次,为了把域X1中的图像(例如一只美洲豹)迁移到域X2中(例如各种家猫),我们在目标风格空间(家猫风格)使用随机的风格代码重组了输入图像的内容代码,不同的风格代码生成不同的输出结果。

相关算法

为了实现上述随机风格迁移,本文参考了下列相关算法:

生成对抗网络(GANs)

本文中,通过参考目标域的真实图像,使用GANs调整了迁移图像的分布细节。

图像迁移

在计算出每个域中图像的风格和每个风格对应的样本个数后,我们将每种风格作为一个单独的域进行处理。并使用多域图像迁移学习绘制每个风格对图像,进而实现多维迁移。

风格迁移


本文借助图像的内容特征和风格特征,提出的模型解决了单一样本的目标风格迁移和由图像集才能生成目标风格的弊端。

非耦合表示学习

本文受到了最近兴起的非耦合表示学习(disentangled representation learning)框架的启发。虽然很难定义图像的内容和风格,而且不同的图像要使用不同的定义,因此,我们将内容定义为下属空间,将风格定义为底层空间。

论文模型


▲论文模型

本文图像迁移由两个自动编码器组成(上图中分别用红色和蓝色箭头标注),每个域中都有这两个自动编码器。每个自动编码器的隐式代码分别由内容代码c和风格代码s组成。

用对抗对象(上图中的虚线)对模型进行训练以保证生成的迁移图像和目标域的真实图像别无二致。同时也用双向重构对象(上图中的点滑线)对模型进行了训练,以保证图像和隐式代码之间的双向重构。


▲自动编码器的结构

上图为本文中自动编码器的结构。它由内容编码器、风格编码器和联合编码器组成。

评价指标

论文中使用了下列指标来评估模型性能:

个人偏好
LPIPS距离

条件初始得分(Conditional Inception Score,CIS)

实验结果

此外,该方法还能根据图像中物体的轮廓生成迁移图像。


▲轮廓迁移(拯救淘宝卖家的神器!)

上图中,输入图像为一只女士皮鞋的轮廓,GT是皮鞋的真实图像3,该模型可以根据图像中物体的轮廓进行图像迁移。

在第三行,当输入一张皮鞋的真实图像,该模型可以生成皮鞋的轮廓,即实现逆向迁移。



原文发布时间为:2018-04-17

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

▲动物图像迁移


视频中,该模型成功的实现了一类动物向另一类动物的图像迁移。当输入一张给定图像时,可以生成多种迁移图像。生成的迁移图像中动物的形状发生了明显的改变,但是它们的表情保持一致。


该模型还可以实现高分辨率的风景图像迁移。


▲风景图像迁移

相关文章
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
87 6
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
65 3
|
16天前
|
弹性计算 监控 数据库
制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程
本文通过一个制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程,展示了企业级应用上云的实践方法与显著优势,包括弹性计算资源、高可靠性、数据安全及降低维护成本等,为企业数字化转型提供参考。
41 5
|
17天前
|
缓存 负载均衡 JavaScript
构建高效后端服务:Node.js与Express框架实践
在数字化时代的浪潮中,后端服务的重要性不言而喻。本文将通过深入浅出的方式介绍如何利用Node.js及其强大的Express框架来搭建一个高效的后端服务。我们将从零开始,逐步深入,不仅涉及基础的代码编写,更会探讨如何优化性能和处理高并发场景。无论你是后端新手还是希望提高现有技能的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
28天前
|
存储 安全 网络安全
网络安全法律框架:全球视角下的合规性分析
网络安全法律框架:全球视角下的合规性分析
38 1
|
1月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
64 4
|
1月前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
48 1
|
2月前
|
Web App开发 JavaScript 中间件
构建高效后端服务:Node.js与Express框架的完美结合
【10月更文挑战第21天】本文将引导你走进Node.js和Express框架的世界,探索它们如何共同打造一个高效、可扩展的后端服务。通过深入浅出的解释和实际代码示例,我们将一起理解这一组合的魅力所在,并学习如何利用它们来构建现代Web应用。
56 1
|
24天前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
|
24天前
|
网络协议 网络安全 Apache
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架