多核环境下cache line的测试

简介: 前阵子接触到一道关于数组内部链表(多用于内存池技术)的数据结构的题, 这种数据结构能够比普通链表在cache中更容易命中, 理由很简单, 就是因为其在地址上是连续的(=.=!), 借这个机会, 就对cpu cache进行了一个研究, 今天做一个简单的分享, 首先先来普及一下cpu cache的知识, 这里的cache是指cpu的高速缓存.

前阵子接触到一道关于数组内部链表(多用于内存池技术)的数据结构的题, 这种数据结构能够比普通链表在cache中更容易命中, 理由很简单, 就是因为其在地址上是连续的(=.=!), 借这个机会, 就对cpu cache进行了一个研究, 今天做一个简单的分享, 首先先来普及一下cpu cache的知识, 这里的cache是指cpu的高速缓存. 在我们程序员看来, 缓存是一个透明部件. 因此, 程序员通常无法直接干预对缓存的操作. 但是, 确实可以根据缓存的特点对程序代码实施特定优化, 从而更好地利用高速缓存. 

高速缓存的置换策略会尽可能地将 访问频繁的数据放入cache中, 这是一个动态的过程, 所以cache中的数据不会一直不变. 目前一般的机器的cpu cache可分为一级缓存和二级缓存. 一级缓存更靠近cpu, 速度比二级缓存更快. 二级缓存比一级缓存速度更慢, 容量更大, 主要就是做一级缓存和内存之间数据临时交换的地方用.
这两者和RAM在空间和效率上的关系如下:
L1 Cache —> L2 Cache —> RAM
————> 容量递增 ————>
————> 速度递减 ————>
—–> CPU访问优先级递减 —–>
在linux系统中, 我们可以使用cat /proc/cpuinfo 来获知机器的cpu和核数.
而cpu cache的信息, 我们通过dmesg | grep cache来获知.
例如:
CPU: L1 I Cache: 64K (64 bytes/line), D cache 64K (64 bytes/line)
CPU: L1 I Cache: 64K (64 bytes/line), D cache 64K (64 bytes/line)
说明我这台机器有两个处理器, 并只有一级缓存, 大小为 64K, 缓存行/快 大小为64 bytes.

 

由于不同的处理器之间都具有自己 的高速缓存, 所以当两个cpu的cache中都存有数据a, 那么就有可能需要进行同步数据, 而cache之间同步数据的最小单元为cache行大小, 可以把一个cache想象成一张表, 表的每一行都是64bytes(假设), 当cpu被告知cache第一行的第一个byte为脏数据时, cpu会将第一行都进行同步.
例如以下场景:

CPU1读取了数据a(假设a小于cache行大小),并存入CPU1的高速缓存.

CPU2也读取了数据a,并存入CPU2的高速缓存.

CPU1修改了数据a, a被放回CPU1的高速缓存行. 但是该信息并没有被写入RAM.

CPU2访问a, 但由于CPU1并未将数据写入RAM, 导致了数据不同步.

为了解决这个问题, 芯片设计者制定了一个规则. 当一个CPU修改高速缓存行中的字节时, 计算机中的其它CPU会被通知, 它们的高速缓存将视为无效. 于是, 在上面的情况下, CPU2发现自己的高速缓存中数据已无效, CPU1将立即把自己的数据写回RAM, 然后CPU2重新读取该数据. 这样就完成了一次两个cpu之间cache的同步.

为了测试上述场景, 我编写了如下程序进行测试:

 

  1 #define EXEC_COUNT (100 * 1000 * 1000)
  2  
  3 struct bits_t
  4 {
  5     int a;
  6     char placeholder[64];
  7     int b;
  8 };
  9  
 10 struct bits_t bits;
 11  
 12 int which_cpu(const char* prefix_)
 13 {
 14     #ifdef ENABLE_WHCIH_CPU
 15     cpu_set_t cur_cpu;
 16     CPU_ZERO(&cur_cpu);
 17     if (sched_getaffinity(0, sizeof(cur_cpu), &cur_cpu) == -1)
 18     {
 19         printf("warning: cound not get cpu affinity, continuing...\n");
 20         return -1;
 21     }
 22     int num = sysconf(_SC_NPROCESSORS_CONF);
 23     for (int i = 0; i < num; i++)
 24     {
 25         if (CPU_ISSET(i, &cur_cpu))
 26         {
 27             printf("[%s] this process %d is running processor : %d\n", prefix_, getpid(), i);
 28         }
 29     }
 30     #endif
 31  
 32     return 0;
 33 }
 34  
 35 int set_cpu(int cpu_id_)
 36 {
 37     #ifdef ENABLE_SET_CPU
 38     cpu_set_t mask;
 39     CPU_ZERO(&mask);
 40     CPU_SET(cpu_id_, &mask);
 41     if (sched_setaffinity(0, sizeof(mask), &mask) == -1)
 42     {
 43         printf("warning: could not set CPU affinity, continuing...\n");
 44         return -1;
 45     }
 46     #endif
 47  
 48     return 0;
 49 }
 50  
 51 void* thd_func1(void* arg_)
 52 {
 53     set_cpu(0);
 54     which_cpu("thread 1 start");
 55     timeval begin_tv;
 56     gettimeofday(&begin_tv, NULL);
 57  
 58     for (int i = 0; i < EXEC_COUNT; i++)
 59     {
 60         bits.a += 1;
 61         int a = bits.a;
 62     }
 63  
 64     timeval end_tv;
 65     gettimeofday(&end_tv, NULL);
 66     printf("thd1 perf:[%lu]us\n", (end_tv.tv_sec * 1000 * 1000 + end_tv.tv_usec) - (begin_tv.tv_sec * 1000 * 1000 + begin_tv.tv_usec));
 67     which_cpu("thread 1 end");
 68  
 69     return NULL;
 70 }
 71  
 72 void* thd_func2(void* arg_)
 73 {
 74     set_cpu(1);
 75     which_cpu("thread 2 start");
 76     timeval begin_tv;
 77     gettimeofday(&begin_tv, NULL);
 78  
 79     for (int i = 0; i < EXEC_COUNT; i++)
 80     {
 81         bits.b += 2;
 82         int b = bits.b;
 83     }
 84  
 85     timeval end_tv;
 86     gettimeofday(&end_tv, NULL);
 87     printf("thd2 perf:[%lu]us\n", (end_tv.tv_sec * 1000 * 1000 + end_tv.tv_usec) - (begin_tv.tv_sec * 1000 * 1000 + begin_tv.tv_usec));
 88     which_cpu("thread 2 end");
 89  
 90     return NULL;
 91 }
 92  
 93 int main(int argc_, char* argv_[])
 94 {
 95     int num = sysconf(_SC_NPROCESSORS_CONF);
 96     printf("system has %d processor(s).\n", num);
 97     cpu_set_t cpu_mask;
 98     cpu_set_t cur_cpu_info;
 99  
100     memset((void*)&bits, 0, sizeof(bits_t));
101     set_cpu(0);
102     which_cpu("main thread");
103  
104     pthread_t pid1;
105     pthread_create(&pid1, NULL, thd_func1, NULL);
106  
107     pthread_t pid2;
108     pthread_create(&pid2, NULL, thd_func2, NULL);
109  
110     pthread_join(pid1, NULL);
111     pthread_join(pid2, NULL);
112  
113     return 0;
114 }

 

 

 
该程序中会创建两个线程, 分别对全局变量bits的a和b成员进行1亿次加法操作.
在这里我分别针对四种情况进行了测试 -
1. 两个线程分别跑在不同的cpu上, bits_t结构体没有placeholder这64个填充字节.
2. 两个线程分别跑在不同的cpu上, bits_t结构体有placeholder这64个填充字节.
3. 两个线程分别跑在相同的cpu上, bits_t结构体没有placeholder这64个填充字节.
4. 两个线程分别跑在相同的cpu上, bits_t结构体有placeholder这64个填充字节.
程序可以通过set_cpu函数来将线程绑定到指定的cpu上去.
为了大家阅读的方便, 我已将测试结果报告整理成以下四个表格.
情况一测试结果:
 线程id  CPU绑定  有无placeholder  平均耗时(微妙)
 1  cpu0  无  2186931
 2  cpu1  无  2033496

   

情况二测试结果:

线程id  CPU绑定  有无placeholder  平均耗时(微妙)
 1  cpu0  有  402144
 2  cpu1  有  392745

   

我们先来看情况一和情况二的结果 对比, 显然, 后者要比前者效率高得多的多, 可以验证在有 placeholder填充字节之后, bit_t的a和b域被划分到了cache的不同两行, 所以当在cpu0执行的线程1修改a后, cpu1在读b时, 不需要去同步cache. 而情况一因为a和b在cache中的同一行, 导致两个cpu要互相进行大量的cache行同步.
情况三测试结果:
线程id  CPU绑定  有无placeholder  平均耗时(微妙)
 1  cpu0  无  716056
 2  cpu0  无  686804

   

况四测试结果:

线程id  CPU绑定  有无placeholder  平均耗时(微妙)
 1  cpu0  有  761421
 2  cpu0  有  884969

 

可以看出, 情况三和四, 因为两个线程运行在同一个cpu上, 有和没有placeholder填充字节在性能上几乎没有什么区别, 因为不存在cache之间行同步的问题, 但是由于是一个cpu在调度切换两个线程, 所以要比情况一慢一点.
从上面测试结果看来, 某些特定情况下, 对于cache的优化还是很重要的, 但是也不能一味地为了追求性能都将所有共享数据加入填充字节, 毕竟cache就那么大, 如果不是某些特定的读写非常频繁的场景下, 没有必要这么做.

 

PS: 由于不同的硬件架构体系之间会有差别, 例如某些硬件架构同一个cpu下的两个物理核之间共享cache, 所以测试时要试具体环境而定.
 
来源:http://www.cppthinker.com/cpp/9/cpu_cache/

img_e00999465d1c2c1b02df587a3ec9c13d.jpg
微信公众号: 猿人谷
如果您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】
如果您希望与我交流互动,欢迎关注微信公众号
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。

目录
相关文章
|
Linux 测试技术
巧用 bc 命令测试 Linux 主机的 CPU 性能
今天向公司申请了一台 Linux 主机,作为平时的开发环境。由于自己并不依赖远程开发(大多数情况下项目都可以本地开发、调试),于是只申请了 4C/8G 的低配机器。突然好奇的是,这台机器的性能怎么样?
360 0
|
存储 开发框架 安全
在 C# 中使用 Span<T> 和 Memory<T> 编写高性能代码
在 C# 中使用 Span 和 Memory 编写高性能代码 .NET 中支持的内存类型 .NET Core 2.1 中新增的类型 访问连续内存: Span 和 Memory Span 介绍 C# 中的 Span Span 和 Arrays Span 和 ReadOnlySpan Memory 入门 ReadOnlyMemory Span 和 Memory 的优势 连续和非连续内存缓冲区 不连续的缓冲区: ReadOnly 序列 实际场景 Benchmarking 基准测试 安装 NuGet 包 Benchmarking Span 执行基准测试 解读基准测试结果 Span 限制 结论
466 0
|
缓存 Linux 数据安全/隐私保护
实战分享|Write Cache设置效果为何有差异?
sdparm和hdparm去修改HDD的write cache,发现在系统下write cache设置的效果有差异。
|
缓存 算法 安全
小师妹学JVM之:cache line对代码性能的影响
小师妹学JVM之:cache line对代码性能的影响
小师妹学JVM之:cache line对代码性能的影响
|
Linux 芯片 内存技术
Cache Line 伪共享发现与优化
作者:吴一昊,杨勇 ### 1. 关于本文 ### 本文基于 Joe Mario 的[一篇博客](https://joemario.github.io/blog/2016/09/01/c2c-blog/) 改编而成。
5983 1
|
存储 算法 数据库

热门文章

最新文章