Android内存优化11 内存泄漏常见情况2 线程持久化

简介:

线程持久化

Java中的Thread有一个特点就是她们都是直接被GC Root所引用,也就是说Dalvik虚拟机对所有被激活状态的线程都是持有强引用,导致GC永远都无法回收掉这些线程对象,除非线程被手动停止并置为null或者用户直接kill进程操作。所以当使用线程时,一定要考虑在Activity退出时,及时将线程也停止并释放掉

内存泄漏1:AsyncTask

void startAsyncTask() {
    new AsyncTask<Void, Void, Void>() {
        @Override protected Void doInBackground(Void... params) { while(true); } }.execute(); } super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); View aicButton = findViewById(R.id.at_button); aicButton.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { startAsyncTask(); nextActivity(); } });

 

使用LeakCanary检测到的内存泄漏:

这里写图片描述

为什么? 
上面代码在activity中创建了一个匿名类AsyncTask,匿名类和非静态内部类相同,会持有外部类对象,这里也就是activity,因此如果你在Activity里声明且实例化一个匿名的AsyncTask对象,则可能会发生内存泄漏,如果这个线程在Activity销毁后还一直在后台执行,那这个线程会继续持有这个Activity的引用从而不会被GC回收,直到线程执行完成。

怎么解决? 
自定义静态AsyncTask类,并且让AsyncTask的周期和Activity周期保持一致,也就是在Activity生命周期结束时要将AsyncTask cancel掉。

内存泄漏2:Handler

非静态内部类导致的内存泄露在Android开发中有一种典型的场景就是使用Handler,很多开发者在使用Handler是这样写的:

public class MainActivity extends AppCompatActivity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); start(); } private void start() { Message msg = Message.obtain(); msg.what = 1; mHandler.sendMessageDelayed(msg,1000); } private Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { if (msg.what == 1) { // 做相应逻辑 } } }; } 

也许有人会说,mHandler并未作为静态变量持有Activity引用,生命周期可能不会比Activity长,应该不一定会导致内存泄露呢,显然不是这样的!

熟悉Handler消息机制的都知道,mHandler会作为成员变量保存在发送的消息msg中,即msg持有mHandler的引用,而mHandlerActivity的非静态内部类实例,即mHandler持有Activity的引用,那么我们就可以理解为msg间接持有Activity的引用。msg被发送后先放到消息队列MessageQueue中,然后等待Looper的轮询处理(MessageQueueLooper都是与线程相关联的,MessageQueueLooper引用的成员变量,而Looper是保存在ThreadLocal中的)。那么当Activity退出后,msg可能仍然存在于消息对列MessageQueue中未处理或者正在处理,那么这样就会导致Activity无法被回收,以致发生Activity的内存泄露。

通常在Android开发中如果要使用内部类,但又要规避内存泄露,一般都会采用静态内部类+弱引用的方式。

public class MainActivity extends AppCompatActivity { private Handler mHandler; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); mHandler = new MyHandler(this); start(); } private void start() { Message msg = Message.obtain(); msg.what = 1; mHandler.sendMessage(msg); } private static class MyHandler extends Handler { private WeakReference<MainActivity> activityWeakReference; public MyHandler(MainActivity activity) { activityWeakReference = new WeakReference<>(activity); } @Override public void handleMessage(Message msg) { MainActivity activity = activityWeakReference.get(); if (activity != null) { if (msg.what == 1) { // 做相应逻辑 } } } } } 

mHandler通过弱引用的方式持有Activity,当GC执行垃圾回收时,遇到Activity就会回收并释放所占据的内存单元。这样就不会发生内存泄露了。

上面的做法确实避免了Activity导致的内存泄露,发送的msg不再已经没有持有Activity的引用了,但是msg还是有可能存在消息队列MessageQueue中,所以更好的是在Activity销毁时就将mHandler的回调和发送的消息给移除掉。

@Override
protected void onDestroy() { super.onDestroy(); mHandler.removeCallbacksAndMessages(null); }

为什么?

创建的Handler对象为匿名类,匿名类默认持有外部类activity, Handler通过发送Message与主线程交互,Message发出之后是存储在MessageQueue中的,有些Message也不是马上就被处理的。这时activity被handler持有
handler被message持有,message被messagequeue持有,message queue被loop持有,主线程的loop是全局存在的,这时就造成activity被临时性持久化,造成临时性内存泄漏

怎么解决? 
可以由上面的结论看出,产生泄漏的根源在于匿名类持有Activity的引用,因此可以自定义Handler和Runnable类并声明成静态的内部类,来解除和Activity的引用。或者在activity 结束时,将发送的Message移除

内存泄漏3:Thread

代码如下: 
MainActivity.java

void spawnThread() {
    new Thread() {
        @Override public void run() { while(true); } }.start(); } View tButton = findViewById(R.id.t_button); tButton.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { spawnThread(); nextActivity(); } }); 

 

为什么? 
Java中的Thread有一个特点就是她们都是直接被GC Root所引用,也就是说Dalvik虚拟机对所有被激活状态的线程都是持有强引用,导致GC永远都无法回收掉这些线程对象,除非线程被手动停止并置为null或者用户直接kill进程操作。看到这相信你应该也是心中有答案了吧 : 我在每一个MainActivity中都创建了一个线程,此线程会持有MainActivity的引用,即使退出Activity当前线程因为是直接被GC Root引用所以不会被回收掉,导致MainActivity也无法被GC回收

怎么解决? 
当使用线程时,一定要考虑在Activity退出时,及时将线程也停止并释放掉

内存泄漏4:Timer Tasks

TimerTimerTask在Android中通常会被用来做一些计时或循环任务,比如实现无限轮播的ViewPager

public class MainActivity extends AppCompatActivity { private ViewPager mViewPager; private PagerAdapter mAdapter; private Timer mTimer; private TimerTask mTimerTask; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); init(); mTimer.schedule(mTimerTask, 3000, 3000); } private void init() { mViewPager = (ViewPager) findViewById(R.id.view_pager); mAdapter = new ViewPagerAdapter(); mViewPager.setAdapter(mAdapter); mTimer = new Timer(); mTimerTask = new TimerTask() { @Override public void run() { MainActivity.this.runOnUiThread(new Runnable() { @Override public void run() { loopViewpager(); } }); } }; } private void loopViewpager() { if (mAdapter.getCount() > 0) { int curPos = mViewPager.getCurrentItem(); curPos = (++curPos) % mAdapter.getCount(); mViewPager.setCurrentItem(curPos); } } private void stopLoopViewPager() { if (mTimer != null) { mTimer.cancel(); mTimer.purge(); mTimer = null; } if (mTimerTask != null) { mTimerTask.cancel(); mTimerTask = null; } } @Override protected void onDestroy() { super.onDestroy(); stopLoopViewPager(); } } 

当我们Activity销毁的时,有可能Timer还在继续等待执行TimerTask,它持有Activity的引用不能被回收,因此当我们Activity销毁的时候要立即cancelTimerTimerTask,以避免发生内存泄漏。

为什么? 
这里内存泄漏在于Timer和TimerTask没有进行Cancel,从而导致Timer和TimerTask一直引用外部类Activity。

怎么解决? 
在适当的时机进行Cancel。

内存泄漏5:属性动画造成内存泄露



动画同样是一个耗时任务,比如在Activity中启动了属性动画(ObjectAnimator),但是在销毁的时候,没有调用cancle方法,虽然我们看不到动画了,但是这个动画依然会不断地播放下去,动画引用所在的控件,所在的控件引用Activity,这就造成Activity无法正常释放。因此同样要在Activity销毁的时候cancel掉属性动画,避免发生内存泄漏。

@Override
protected void onDestroy() { super.onDestroy(); mAnimator.cancel(); } 





    本文转自 一点点征服   博客园博客,原文链接:http://www.cnblogs.com/ldq2016/p/8473376.html ,如需转载请自行联系原作者

相关文章
|
4月前
|
Web App开发 缓存 监控
内存溢出与内存泄漏:解析与解决方案
本文深入解析内存溢出与内存泄漏的区别及成因,结合Java代码示例展示典型问题场景,剖析静态集合滥用、资源未释放等常见原因,并提供使用分析工具、优化内存配置、分批处理数据等实用解决方案,助力提升程序稳定性与性能。
1256 1
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
237 35
|
Java 调度 Android开发
安卓与iOS开发中的线程管理差异解析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自拥有独特的魅力。如同东西方文化的差异,它们在处理多线程任务时也展现出不同的哲学。本文将带你穿梭于这两个平台之间,比较它们在线程管理上的核心理念、实现方式及性能考量,助你成为跨平台的编程高手。
|
Java 数据库 Android开发
一个Android App最少有几个线程?实现多线程的方式有哪些?
本文介绍了Android多线程编程的重要性及其实现方法,涵盖了基本概念、常见线程类型(如主线程、工作线程)以及多种多线程实现方式(如`Thread`、`HandlerThread`、`Executors`、Kotlin协程等)。通过合理的多线程管理,可大幅提升应用性能和用户体验。
593 15
一个Android App最少有几个线程?实现多线程的方式有哪些?
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
容器
在使用指针数组进行动态内存分配时,如何避免内存泄漏
在使用指针数组进行动态内存分配时,避免内存泄漏的关键在于确保每个分配的内存块都能被正确释放。具体做法包括:1. 分配后立即检查是否成功;2. 使用完成后及时释放内存;3. 避免重复释放同一内存地址;4. 尽量使用智能指针或容器类管理内存。
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
272 6
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
1631 9
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
479 31
|
JavaScript 前端开发 Java
JavaScript 中内存泄漏的几种常见情况
【10月更文挑战第25天】实际上还有许多其他的情况可能导致内存泄漏。为了避免内存泄漏,我们需要在开发过程中注意及时清理不再需要的资源,合理使用内存,并且定期检查内存使用情况,以确保程序的性能和稳定性
211 2

热门文章

最新文章