C#加密算法汇总

简介:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
方法一:
     //须添加对System.Web的引用
     using  System.Web.Security;
     
     ...
     
     /// <summary>
     /// SHA1加密字符串
     /// </summary>
     /// <param name="source">源字符串</param>
     /// <returns>加密后的字符串</returns>
     public  string  SHA1( string  source)
     {
         return  FormsAuthentication.HashPasswordForStoringInConfigFile(source, "SHA1" );
     }
 
 
     /// <summary>
     /// MD5加密字符串
     /// </summary>
     /// <param name="source">源字符串</param>
     /// <returns>加密后的字符串</returns>
     public  string  MD5( string  source)
     {
         return  FormsAuthentication.HashPasswordForStoringInConfigFile(source, "MD5" );;
     }

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
方法二(可逆加密解密):
     using  System.Security.Cryptography;
     
     ...
     
     public  string  Encode( string  data)
     {
         byte [] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(KEY_64);
         byte [] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(IV_64);
     
         DESCryptoServiceProvider cryptoProvider = new  DESCryptoServiceProvider();
         int  i = cryptoProvider.KeySize;
         MemoryStream ms = new  MemoryStream();
         CryptoStream cst = new  CryptoStream(ms, cryptoProvider.CreateEncryptor(byKey, byIV), CryptoStreamMode.Write);
     
         StreamWriter sw = new  StreamWriter(cst);
         sw.Write(data);
         sw.Flush();
         cst.FlushFinalBlock();
         sw.Flush();
         return  Convert.ToBase64String(ms.GetBuffer(), 0, ( int )ms.Length);
     
     }
     
     public  string  Decode( string  data)
     {
         byte [] byKey = System.Text.ASCIIEncoding.ASCII.GetBytes(KEY_64);
         byte [] byIV = System.Text.ASCIIEncoding.ASCII.GetBytes(IV_64);
     
         byte [] byEnc;
         try
         {
             byEnc = Convert.FromBase64String(data);
         }
         catch
         {
             return  null ;
         }
     
         DESCryptoServiceProvider cryptoProvider = new  DESCryptoServiceProvider();
         MemoryStream ms = new  MemoryStream(byEnc);
         CryptoStream cst = new  CryptoStream(ms, cryptoProvider.CreateDecryptor(byKey, byIV), CryptoStreamMode.Read);
         StreamReader sr = new  StreamReader(cst);
         return  sr.ReadToEnd();
     }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
方法三(MD5不可逆):
     using  System.Security.Cryptography;
     
     ...
     
     //MD5不可逆加密
     
     //32位加密
     
     public  string  GetMD5_32( string  s, string  _input_charset)
     {
         MD5 md5 = new  MD5CryptoServiceProvider();
         byte [] t = md5.ComputeHash(Encoding.GetEncoding(_input_charset).GetBytes(s));
         StringBuilder sb = new  StringBuilder(32);
         for  ( int  i = 0; i < t.Length; i++)
         {
             sb.Append(t[i].ToString( "x" ).PadLeft(2, '0' ));
         }
         return  sb.ToString();
     }
     
     //16位加密
     public  static  string  GetMd5_16( string  ConvertString)
     {
         MD5CryptoServiceProvider md5 = new  MD5CryptoServiceProvider();
         string  t2 = BitConverter.ToString(md5.ComputeHash(UTF8Encoding.Default.GetBytes(ConvertString)), 4, 8);
         t2 = t2.Replace( "-" , "" );
         return  t2;
     }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
方法四(对称加密):
     using  System.IO;
     using  System.Security.Cryptography;
     
     ...
     
     private  SymmetricAlgorithm mobjCryptoService;
     private  string  Key;
     /// <summary>   
     /// 对称加密类的构造函数   
     /// </summary>   
     public  SymmetricMethod()
     {
         mobjCryptoService = new  RijndaelManaged();
         Key = "Guz(%&hj7x89H$yuBI0456FtmaT5&fvHUFCy76*h%(HilJ$lhj!y6&(*jkP87jH7" ;
     }
     /// <summary>   
     /// 获得密钥   
     /// </summary>   
     /// <returns>密钥</returns>   
     private  byte [] GetLegalKey()
     {
         string  sTemp = Key;
         mobjCryptoService.GenerateKey();
         byte [] bytTemp = mobjCryptoService.Key;
         int  KeyLength = bytTemp.Length;
         if  (sTemp.Length > KeyLength)
             sTemp = sTemp.Substring(0, KeyLength);
         else  if  (sTemp.Length < KeyLength)
             sTemp = sTemp.PadRight(KeyLength, ' ' );
         return  ASCIIEncoding.ASCII.GetBytes(sTemp);
     }
     /// <summary>   
     /// 获得初始向量IV   
     /// </summary>   
     /// <returns>初试向量IV</returns>   
     private  byte [] GetLegalIV()
     {
         string  sTemp = "E4ghj*Ghg7!rNIfb&95GUY86GfghUb#er57HBh(u%g6HJ($jhWk7&!hg4ui%$hjk" ;
         mobjCryptoService.GenerateIV();
         byte [] bytTemp = mobjCryptoService.IV;
         int  IVLength = bytTemp.Length;
         if  (sTemp.Length > IVLength)
             sTemp = sTemp.Substring(0, IVLength);
         else  if  (sTemp.Length < IVLength)
             sTemp = sTemp.PadRight(IVLength, ' ' );
         return  ASCIIEncoding.ASCII.GetBytes(sTemp);
     }
     /// <summary>   
     /// 加密方法   
     /// </summary>   
     /// <param name="Source">待加密的串</param>   
     /// <returns>经过加密的串</returns>   
     public  string  Encrypto( string  Source)
     {
         byte [] bytIn = UTF8Encoding.UTF8.GetBytes(Source);
         MemoryStream ms = new  MemoryStream();
         mobjCryptoService.Key = GetLegalKey();
         mobjCryptoService.IV = GetLegalIV();
         ICryptoTransform encrypto = mobjCryptoService.CreateEncryptor();
         CryptoStream cs = new  CryptoStream(ms, encrypto, CryptoStreamMode.Write);
         cs.Write(bytIn, 0, bytIn.Length);
         cs.FlushFinalBlock();
         ms.Close();
         byte [] bytOut = ms.ToArray();
         return  Convert.ToBase64String(bytOut);
     }
     /// <summary>   
     /// 解密方法   
     /// </summary>   
     /// <param name="Source">待解密的串</param>   
     /// <returns>经过解密的串</returns>   
     public  string  Decrypto( string  Source)
     {
         byte [] bytIn = Convert.FromBase64String(Source);
         MemoryStream ms = new  MemoryStream(bytIn, 0, bytIn.Length);
         mobjCryptoService.Key = GetLegalKey();
         mobjCryptoService.IV = GetLegalIV();
         ICryptoTransform encrypto = mobjCryptoService.CreateDecryptor();
         CryptoStream cs = new  CryptoStream(ms, encrypto, CryptoStreamMode.Read);
         StreamReader sr = new  StreamReader(cs);
         return  sr.ReadToEnd();
     }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
方法五:
     using  System.IO;
     using  System.Security.Cryptography;
     using  System.Text;
     
     ...
     
     //默认密钥向量
     private  static  byte [] Keys = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF };
     /// <summary>
     /// DES加密字符串
     /// </summary>
     /// <param name="encryptString">待加密的字符串</param>
     /// <param name="encryptKey">加密密钥,要求为8位</param>
     /// <returns>加密成功返回加密后的字符串,失败返回源串</returns>
     public  static  string  EncryptDES( string  encryptString, string  encryptKey)
     {
         try
         {
             byte [] rgbKey = Encoding.UTF8.GetBytes(encryptKey.Substring(0, 8));
             byte [] rgbIV = Keys;
             byte [] inputByteArray = Encoding.UTF8.GetBytes(encryptString);
             DESCryptoServiceProvider dCSP = new  DESCryptoServiceProvider();
             MemoryStream mStream = new  MemoryStream();
             CryptoStream cStream = new  CryptoStream(mStream, dCSP.CreateEncryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
             cStream.Write(inputByteArray, 0, inputByteArray.Length);
             cStream.FlushFinalBlock();
             return  Convert.ToBase64String(mStream.ToArray());
         }
         catch
         {
             return  encryptString;
         }
     }
     
     /// <summary>
     /// DES解密字符串
     /// </summary>
     /// <param name="decryptString">待解密的字符串</param>
     /// <param name="decryptKey">解密密钥,要求为8位,和加密密钥相同</param>
     /// <returns>解密成功返回解密后的字符串,失败返源串</returns>
     public  static  string  DecryptDES( string  decryptString, string  decryptKey)
     {
         try
         {
             byte [] rgbKey = Encoding.UTF8.GetBytes(decryptKey);
             byte [] rgbIV = Keys;
             byte [] inputByteArray = Convert.FromBase64String(decryptString);
             DESCryptoServiceProvider DCSP = new  DESCryptoServiceProvider();
             MemoryStream mStream = new  MemoryStream();
             CryptoStream cStream = new  CryptoStream(mStream, DCSP.CreateDecryptor(rgbKey, rgbIV), CryptoStreamMode.Write);
             cStream.Write(inputByteArray, 0, inputByteArray.Length);
             cStream.FlushFinalBlock();
             return  Encoding.UTF8.GetString(mStream.ToArray());
         }
         catch
         {
             return  decryptString;
         }
     }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
方法六(文件加密):
     using  System.IO;
     using  System.Security.Cryptography;
     using  System.Text;
     
     ...
     
     //加密文件
     private  static  void  EncryptData(String inName, String outName, byte [] desKey, byte [] desIV)
     {
         //Create the file streams to handle the input and output files.
         FileStream fin = new  FileStream(inName, FileMode.Open, FileAccess.Read);
         FileStream fout = new  FileStream(outName, FileMode.OpenOrCreate, FileAccess.Write);
         fout.SetLength(0);
     
         //Create variables to help with read and write.
         byte [] bin = new  byte [100]; //This is intermediate storage for the encryption.
         long  rdlen = 0;              //This is the total number of bytes written.
         long  totlen = fin.Length;    //This is the total length of the input file.
         int  len;                     //This is the number of bytes to be written at a time.
     
         DES des = new  DESCryptoServiceProvider();
         CryptoStream encStream = new  CryptoStream(fout, des.CreateEncryptor(desKey, desIV), CryptoStreamMode.Write);
     
         //Read from the input file, then encrypt and write to the output file.
         while  (rdlen < totlen)
         {
             len = fin.Read(bin, 0, 100);
             encStream.Write(bin, 0, len);
             rdlen = rdlen + len;
         }
     
         encStream.Close();
         fout.Close();
         fin.Close();
     }
     
     //解密文件
     private  static  void  DecryptData(String inName, String outName, byte [] desKey, byte [] desIV)
     {
         //Create the file streams to handle the input and output files.
         FileStream fin = new  FileStream(inName, FileMode.Open, FileAccess.Read);
         FileStream fout = new  FileStream(outName, FileMode.OpenOrCreate, FileAccess.Write);
         fout.SetLength(0);
     
         //Create variables to help with read and write.
         byte [] bin = new  byte [100]; //This is intermediate storage for the encryption.
         long  rdlen = 0;              //This is the total number of bytes written.
         long  totlen = fin.Length;    //This is the total length of the input file.
         int  len;                     //This is the number of bytes to be written at a time.
     
         DES des = new  DESCryptoServiceProvider();
         CryptoStream encStream = new  CryptoStream(fout, des.CreateDecryptor(desKey, desIV), CryptoStreamMode.Write);
     
         //Read from the input file, then encrypt and write to the output file.
         while  (rdlen < totlen)
         {
             len = fin.Read(bin, 0, 100);
             encStream.Write(bin, 0, len);
             rdlen = rdlen + len;
         }
     
         encStream.Close();
         fout.Close();
         fin.Close();
 
}

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
using  System;
using  System.Security.Cryptography; //这个是处理文字编码的前提
using  System.Text;
using  System.IO;
/// <summary>
/// DES加密方法
/// </summary>
/// <param name="strPlain">明文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>密文</returns>
public  string  DESEncrypt( string  strPlain, string  strDESKey, string  strDESIV)
{
  //把密钥转换成字节数组
  byte [] bytesDESKey=ASCIIEncoding.ASCII.GetBytes(strDESKey);
  //把向量转换成字节数组
  byte [] bytesDESIV=ASCIIEncoding.ASCII.GetBytes(strDESIV);
  //声明1个新的DES对象
  DESCryptoServiceProvider desEncrypt= new  DESCryptoServiceProvider();
  //开辟一块内存流
  MemoryStream msEncrypt= new  MemoryStream();
  //把内存流对象包装成加密流对象
  CryptoStream csEncrypt= new  CryptoStream(msEncrypt,desEncrypt.CreateEncryptor(bytesDESKey,bytesDESIV),CryptoStreamMode.Write);
  //把加密流对象包装成写入流对象
  StreamWriter swEncrypt= new  StreamWriter(csEncrypt);
  //写入流对象写入明文
  swEncrypt.WriteLine(strPlain);
  //写入流关闭
  swEncrypt.Close();
  //加密流关闭
  csEncrypt.Close();
  //把内存流转换成字节数组,内存流现在已经是密文了
  byte [] bytesCipher=msEncrypt.ToArray();
  //内存流关闭
  msEncrypt.Close();
  //把密文字节数组转换为字符串,并返回
  return  UnicodeEncoding.Unicode.GetString(bytesCipher);
}
 
 
 
 
/// <summary>
/// DES解密方法
/// </summary>
/// <param name="strCipher">密文</param>
/// <param name="strDESKey">密钥</param>
/// <param name="strDESIV">向量</param>
/// <returns>明文</returns>
public  string  DESDecrypt( string  strCipher, string  strDESKey, string  strDESIV)
{
  //把密钥转换成字节数组
  byte [] bytesDESKey=ASCIIEncoding.ASCII.GetBytes(strDESKey);
  //把向量转换成字节数组
  byte [] bytesDESIV=ASCIIEncoding.ASCII.GetBytes(strDESIV);
  //把密文转换成字节数组
  byte [] bytesCipher=UnicodeEncoding.Unicode.GetBytes(strCipher);
  //声明1个新的DES对象
  DESCryptoServiceProvider desDecrypt= new  DESCryptoServiceProvider();
  //开辟一块内存流,并存放密文字节数组
  MemoryStream msDecrypt= new  MemoryStream(bytesCipher);
  //把内存流对象包装成解密流对象
  CryptoStream csDecrypt= new  CryptoStream(msDecrypt,desDecrypt.CreateDecryptor(bytesDESKey,bytesDESIV),CryptoStreamMode.Read);
  //把解密流对象包装成读出流对象
  StreamReader srDecrypt= new  StreamReader(csDecrypt);
  //明文=读出流的读出内容
  string  strPlainText=srDecrypt.ReadLine();
  //读出流关闭
  srDecrypt.Close();
  //解密流关闭
  csDecrypt.Close();
  //内存流关闭
  msDecrypt.Close();
  //返回明文
  return  strPlainText;
}



    本文转自曾祥展博客园博客,原文链接:http://www.cnblogs.com/zengxiangzhan/archive/2010/01/30/1659687.html ,如需转载请自行联系原作者
相关文章
|
1月前
|
开发框架 算法 搜索推荐
C# .NET面试系列九:常见的算法
#### 1. 求质数 ```c# // 判断一个数是否为质数的方法 public static bool IsPrime(int number) { if (number < 2) { return false; } for (int i = 2; i <= Math.Sqrt(number); i++) { if (number % i == 0) { return false; } } return true; } class Progr
58 1
|
4月前
|
搜索推荐 算法 C#
【Unity 3D】C#中冒泡排序、选择排序、插入排序等算法的详解(附源码 超详细)
【Unity 3D】C#中冒泡排序、选择排序、插入排序等算法的详解(附源码 超详细)
46 1
|
3天前
|
存储 安全 网络安全
C#编程的安全性与加密技术
【4月更文挑战第21天】C#在.NET框架支持下,以其面向对象和高级特性成为安全软件开发的利器。本文探讨C#在安全加密领域的应用,包括使用System.Security.Cryptography库实现加密算法,利用SSL/TLS保障网络传输安全,进行身份验证,并强调编写安全代码的重要性。实际案例涵盖在线支付、企业应用和文件加密,展示了C#在应对安全挑战的同时,不断拓展其在该领域的潜力和未来前景。
|
1月前
|
搜索推荐 C#
C#实现选择排序算法
C#实现选择排序算法
16 2
|
1月前
|
搜索推荐 C#
C#实现冒泡排序算法
C#实现冒泡排序算法
18 0
|
3月前
|
算法 C#
C# .Net Core bytes转换为GB/MB/KB 算法
C# .Net Core bytes转换为GB/MB/KB 算法
40 0
|
4月前
|
存储 算法 数据处理
C# | 上位机开发新手指南(十一)压缩算法
流式压缩 流式压缩是一种能够实时处理数据流的压缩方式,例如音频、视频等实时传输的数据。 通过流式压缩算法,我们可以边读取边压缩数据,并能够随时输出已压缩的数据,以确保数据的实时性和减少存储和传输所需的带宽。 块压缩 块压缩则是将数据划分为固定大小的块,在每个块内进行独立的压缩处理。块压缩通常适用于文件、存储、传输等离线数据处理场景。 字典压缩 字典压缩是一种基于字典的压缩算法,通过建立一个字典来存储一组重复出现的字符串,并将这些字符串替换成字典中相应的索引,从而减少数据的存储和传输。字典压缩算法可以更好地处理数据中的重复模式,因为它们可以通过建立字典来存储和恢复重复出现的字符串。
46 0
C# | 上位机开发新手指南(十一)压缩算法
|
4月前
|
算法 C# 数据安全/隐私保护
C# | 上位机开发新手指南(十)加密算法——ECC
本篇文章我们将继续探讨另一种非对称加密算法——ECC。 严格的说,其实ECC并不是一种非对称加密算法,它是一种基于椭圆曲线的加密算法,广泛用于数字签名和密钥协商。 与传统的非对称加密算法(例如RSA)不同,ECC算法使用椭圆曲线上的点乘法来生成密钥对和进行加密操作,而不是使用大数分解等数学算法。这使得ECC算法具有相同的安全性和强度,但使用更少的位数,因此在资源受限的环境中具有优势。 ECC算法虽然使用公钥和私钥进行加密和解密操作,但是这些操作是基于点乘法实现的,而不是基于大数分解等算法实现的。因此,ECC算法可以被视为一种非对称加密算法的变体,但是它与传统的非对称加密算法有所不同。
130 0
C# | 上位机开发新手指南(十)加密算法——ECC
|
4月前
|
XML 算法 安全
C# | 上位机开发新手指南(九)加密算法——RSA
RSA的特性 非对称性 RSA算法使用公钥和私钥两个不同的密钥,公钥用于加密数据,私钥用于解密数据。公钥可以公开,任何人都可以使用,而私钥只有密钥持有人可以访问。 安全性 RSA算法基于大数分解难题,即将一个大的合数分解成其质数因子的乘积。由于目前没有有效的算法可以在合理的时间内对大质数进行分解,因此RSA算法被认为是一种安全的加密算法。 可逆性 RSA算法既可以用于加密,也可以用于解密。加密和解密都是可逆的过程,只要使用正确的密钥,就可以还原原始数据。 签名 RSA算法可以用于数字签名,用于验证数据的完整性和真实性。签名过程是将数据使用私钥进行加密,验证过程是将签名使用公钥进行解密。
102 0
C# | 上位机开发新手指南(九)加密算法——RSA
|
4月前
|
算法 搜索推荐 安全
C# | 上位机开发新手指南(八)加密算法——AES
AES——这是在加密算法中相当重要的一种加密方式! 虽然这个世界上已经存在了非对称加密算法(比如RSA、ECC等),但是在对称加密算法中,AES的地位依然相当重要。与非对称加密算法不同,对称加密算法使用的是相同的密钥对数据进行加密和解密,因此其加密和解密速度更快,而且更加高效。而在对称加密算法中,AES是目前最安全、最可靠的加密算法之一,其加密强度和运行效率都非常高。因此,无论是在个人计算机、移动设备,还是在服务器和云计算等领域,AES都被广泛应用于数据的加密和解密过程中。
93 0
C# | 上位机开发新手指南(八)加密算法——AES