揭秘 0.1 + 0.2 != 0.3

简介:

“0.1 + 0.2 = ?”,这道题如果给小学生,他会立马告诉你答案是 0.3,但是交给一些程序去计算,结果就不是那么简单了。

math

事实上,不仅仅是 JS,在其他采用 IEEE754 浮点数标准的语言中,0.1 + 0.2 都不会等于 0.3,但是 0.2 + 0.3 却等于 0.5,这是为何?想必这类问题也困扰着不少程序员。

IEEE754 浮点数的演算

我们知道,科学计数法中 30000 可以写成 3x104,以 10 为底数 4 为指数的科学计数法。在 IEEE754 标准中是比较类似的,只不过它是二进制数,底数也为 2。

IEEE 754 中最常用的浮点数值表示法是:单精确度(32位)和双精确度(64位),JavaScript 采用的是后者。举个例子,十进制数 150,使用双精度浮点数表示法,表示如下:

// D 表示十进制,B 表示二进制
150D = 2^8 * 0.10010110B // 后面省略了 46 个 0

可以通过短除法计算:

   150   余数位
÷    2
---------------
    75     0   
÷    2
---------------
    37     1
÷    2
---------------
    18     1
÷    2
---------------
     9     0
÷    2
---------------
     4     1
÷    2
---------------
     2     0
÷    2
---------------
     1     0
÷    2
---------------
     0     1

上面是整数的表示法,而小数的表示法采用的是乘二取整,如 0.1,它的二进制表示为:最后一个余数为高位值,于是拿到 150 对应的二进制数位 10010110,也就等于 2^8 * 0.10010110

// (0011) 表示循环
0.1D = 2^-3 * 0.110011(0011)

其演算方法如下:

    0.1   整数位
×     2
---------------
    0.2     0 
×     2
---------------
    0.4     0   * ↓
×     2
---------------
    0.8     0 
×     2
---------------
    1.6     1 
×     2
---------------
    1.2     1
×     2
---------------
    0.4     0   * ↑
             (0011循环)

如果一个数既包含整数部分,又包含小数部分,其表示法的计算,需要分拆为整数和小数两部分,然后相加得到结果。与整数不同的是,第一个计算得到的整数位为最高位,故 0.1 对应的二进制数为 0.000110011(0011),也就等于 2^-3 0.1100110011(0011)

IEEE754 浮点数精度丢失

IEEE754 浮点数表示法的数据格式如下图:

// 下图采用大端表示,高位在左,低位在右。

sign  exponent         fraction
+---+----------+---------------------+
| 1 |   2~12   |         13~64       |
+---+----------+---------------------+
  • 从上面小数的乘二取整演算中可以看到,有些小数对应的二进制数是无法写全的,比如 0.1,而 fraction 尾数部分有要求,只允许 52 位,超过部分进一舍零。符号位:高位第 1 位,如图 sign 部分
  • 指数位:高位第 2~12 位,如图 exponent 部分
  • 尾数位:剩下的 fraction 部分

那么,我们就可以得到:

0.1D 
= 2^-4 * 1.10011(0011)B
= 2^-4 * 1.10011(0011 repeat 12 times)0011B // ← 最后一位为 1,进 1
= 2^-4 * 1.10011(0011 repeat 12 times)010B

揭秘 0.1 + 0.2

根据上面我们了解到的知识,我们可以很容易算出这些值:

0.1D = 2^-4 * 1.1001100110011001100110011001100110011001100110011010B
0.2D = 2^-3 * 1.1001100110011001100110011001100110011001100110011010B
0.3D = 2^-2 * 1.0011001100110011001100110011001100110011001100110011B

0.1 + 0.2 时,先将两者指数统一为 -3,故 0.1 小数点向左移一位,于是:

   0.1100110011001100110011001100110011001100110011001101B
+  1.1001100110011001100110011001100110011001100110011010B
------------------------------------------------------------
= 10.0110011001100110011001100110011001100110011001100111B

得到的二进制数为:

10.0110011001100110011001100110011001100110011001100111B

小数点往左移一位使得整数部分为 1,此时尾数部分为 53 位,进一舍零,于是得到最后的值是:

2^-2 * 1.0011001100110011001100110011001100110011001100110100

这个值转化成真值,结果为:0.30000000000000004。那么 0.1 + 0.2 = 0.30000000000000004 的推演到这里就结束了。

相关验证

毕竟咱们手动计算可能存在笔误,可以通过一个叫做 double-bits 的 npm 进行推演,我写了一个小 demo,感兴趣的可以玩耍下:

const db = require('double-bits');
const pad = require('pad');

// [lo, hi] where lo is a 32 bit integer and hi is a 20 bit integer.
const base2Str = (n) => {
  const f = db.fraction(n);
  const s = db.sign(n) ? '-' : '';
  const e = `2^${db.exponent(n) + 1}`;
  const t = `0.${pad(f[1].toString(2), 20, '0')}${pad(f[0].toString(2), 32, '0')}`;
  return `${s}${e} * ${t}`;
};

console.log(base2Str(0.1).toString(2));
console.log(base2Str(0.2).toString(2));
console.log(base2Str(0.3).toString(2));
console.log(base2Str(1.2).toString(2));

上面输出结果为:

2^-3 * 0.11001100110011001100110011001100110011001100110011010
2^-2 * 0.11001100110011001100110011001100110011001100110011010
2^-1 * 0.10011001100110011001111001100110011001100110011001100
2^1 * 0.10011001100110011001111001100110011001100110011001100

最后

为了按照计算机的思维,IEEE754 的标准来计算 0.1 + 0.2,又重新复习了一遍大学计算机基础的知识,原码、反码、补码,以及除二取余、乘二取整计算法,最后能够推演出来,也算是一个胜利吧~








本文转自Barret Lee博客园博客,原文链接:XXXXXXXX,如需转载请自行联系原作者

目录
相关文章
|
15天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171332 12
|
17天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150295 32
|
25天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 14
对话 | ECS如何构筑企业上云的第一道安全防线
|
3天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
7天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1253 8
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
8天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1330 24
|
8天前
|
消息中间件 人工智能 运维
1月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
628 26
1月更文特别场——寻找用云高手,分享云&AI实践
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
|
13天前
|
人工智能 自然语言处理 API
阿里云百炼xWaytoAGI共学课DAY1 - 必须了解的企业级AI应用开发知识点
本课程旨在介绍阿里云百炼大模型平台的核心功能和应用场景,帮助开发者和技术小白快速上手,体验AI的强大能力,并探索企业级AI应用开发的可能性。